Music generation is the task of generating music or music-like sounds from a model or algorithm.
Source separation is a fundamental task in speech, music, and audio processing, and it also provides cleaner and larger data for training generative models. However, improving separation performance in practice often depends on increasingly large networks, inflating training and deployment costs. Motivated by recent advances in inference-time scaling for generative modeling, we propose Training-Time and Inference-Time Scalable Discriminative Source Separation (TISDiSS), a unified framework that integrates early-split multi-loss supervision, shared-parameter design, and dynamic inference repetitions. TISDiSS enables flexible speed-performance trade-offs by adjusting inference depth without retraining additional models. We further provide systematic analyses of architectural and training choices and show that training with more inference repetitions improves shallow-inference performance, benefiting low-latency applications. Experiments on standard speech separation benchmarks demonstrate state-of-the-art performance with a reduced parameter count, establishing TISDiSS as a scalable and practical framework for adaptive source separation.




Generating coherent and diverse human dances from music signals has gained tremendous progress in animating virtual avatars. While existing methods support direct dance synthesis, they fail to recognize that enabling users to edit dance movements is far more practical in real-world choreography scenarios. Moreover, the lack of high-quality dance datasets incorporating iterative editing also limits addressing this challenge. To achieve this goal, we first construct DanceRemix, a large-scale multi-turn editable dance dataset comprising the prompt featuring over 25.3M dance frames and 84.5K pairs. In addition, we propose a novel framework for iterative and editable dance generation coherently aligned with given music signals, namely DanceEditor. Considering the dance motion should be both musical rhythmic and enable iterative editing by user descriptions, our framework is built upon a prediction-then-editing paradigm unifying multi-modal conditions. At the initial prediction stage, our framework improves the authority of generated results by directly modeling dance movements from tailored, aligned music. Moreover, at the subsequent iterative editing stages, we incorporate text descriptions as conditioning information to draw the editable results through a specifically designed Cross-modality Editing Module (CEM). Specifically, CEM adaptively integrates the initial prediction with music and text prompts as temporal motion cues to guide the synthesized sequences. Thereby, the results display music harmonics while preserving fine-grained semantic alignment with text descriptions. Extensive experiments demonstrate that our method outperforms the state-of-the-art models on our newly collected DanceRemix dataset. Code is available at https://lzvsdy.github.io/DanceEditor/.
Recent advances in Multimodal Large Language Models (MLLMs) have demonstrated impressive capabilities across various vision-language tasks. However, their reasoning abilities in the multimodal symbolic music domain remain largely unexplored. We introduce WildScore, the first in-the-wild multimodal symbolic music reasoning and analysis benchmark, designed to evaluate MLLMs' capacity to interpret real-world music scores and answer complex musicological queries. Each instance in WildScore is sourced from genuine musical compositions and accompanied by authentic user-generated questions and discussions, capturing the intricacies of practical music analysis. To facilitate systematic evaluation, we propose a systematic taxonomy, comprising both high-level and fine-grained musicological ontologies. Furthermore, we frame complex music reasoning as multiple-choice question answering, enabling controlled and scalable assessment of MLLMs' symbolic music understanding. Empirical benchmarking of state-of-the-art MLLMs on WildScore reveals intriguing patterns in their visual-symbolic reasoning, uncovering both promising directions and persistent challenges for MLLMs in symbolic music reasoning and analysis. We release the dataset and code.




Enhancing the ability of Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) to interpret sheet music is a crucial step toward building AI musicians. However, current research lacks both evaluation benchmarks and training data for sheet music reasoning. To address this, we propose the idea of synthesizing sheet music problems grounded in music theory, which can serve both as evaluation benchmarks and as training data for reinforcement learning with verifiable rewards (RLVR). We introduce a data synthesis framework that generates verifiable sheet music questions in both textual and visual modalities, leading to the Synthetic Sheet Music Reasoning Benchmark (SSMR-Bench) and a complementary training set. Evaluation results on SSMR-Bench show the importance of models' reasoning abilities in interpreting sheet music. At the same time, the poor performance of Gemini 2.5-Pro highlights the challenges that MLLMs still face in interpreting sheet music in a visual format. By leveraging synthetic data for RLVR, Qwen3-8B-Base and Qwen2.5-VL-Instruct achieve improvements on the SSMR-Bench. Besides, the trained Qwen3-8B-Base surpasses GPT-4 in overall performance on MusicTheoryBench and achieves reasoning performance comparable to GPT-4 with the strategies of Role play and Chain-of-Thought. Notably, its performance on math problems also improves relative to the original Qwen3-8B-Base. Furthermore, our results show that the enhanced reasoning ability can also facilitate music composition. In conclusion, we are the first to propose the idea of synthesizing sheet music problems based on music theory rules, and demonstrate its effectiveness not only in advancing model reasoning for sheet music understanding but also in unlocking new possibilities for AI-assisted music creation.
Music enhances video narratives and emotions, driving demand for automatic video-to-music (V2M) generation. However, existing V2M methods relying solely on visual features or supplementary textual inputs generate music in a black-box manner, often failing to meet user expectations. To address this challenge, we propose a novel multi-condition guided V2M generation framework that incorporates multiple time-varying conditions for enhanced control over music generation. Our method uses a two-stage training strategy that enables learning of V2M fundamentals and audiovisual temporal synchronization while meeting users' needs for multi-condition control. In the first stage, we introduce a fine-grained feature selection module and a progressive temporal alignment attention mechanism to ensure flexible feature alignment. For the second stage, we develop a dynamic conditional fusion module and a control-guided decoder module to integrate multiple conditions and accurately guide the music composition process. Extensive experiments demonstrate that our method outperforms existing V2M pipelines in both subjective and objective evaluations, significantly enhancing control and alignment with user expectations.
We introduce a new class of generative models for music called live music models that produce a continuous stream of music in real-time with synchronized user control. We release Magenta RealTime, an open-weights live music model that can be steered using text or audio prompts to control acoustic style. On automatic metrics of music quality, Magenta RealTime outperforms other open-weights music generation models, despite using fewer parameters and offering first-of-its-kind live generation capabilities. We also release Lyria RealTime, an API-based model with extended controls, offering access to our most powerful model with wide prompt coverage. These models demonstrate a new paradigm for AI-assisted music creation that emphasizes human-in-the-loop interaction for live music performance.
Existing multi-timbre transcription models struggle with generalization beyond pre-trained instruments and rigid source-count constraints. We address these limitations with a lightweight deep clustering solution featuring: 1) a timbre-agnostic backbone achieving state-of-the-art performance with only half the parameters of comparable models, and 2) a novel associative memory mechanism that mimics human auditory cognition to dynamically encode unseen timbres via attention-based clustering. Our biologically-inspired framework enables adaptive polyphonic separation with minimal training data (12.5 minutes), supported by a new synthetic dataset method offering cost-effective, high-precision multi-timbre generation. Experiments show the timbre-agnostic transcription model outperforms existing models on public benchmarks, while the separation module demonstrates promising timbre discrimination. This work provides an efficient framework for timbre-related music transcription and explores new directions for timbre-aware separation through cognitive-inspired architectures.
Human motion video generation has garnered significant research interest due to its broad applications, enabling innovations such as photorealistic singing heads or dynamic avatars that seamlessly dance to music. However, existing surveys in this field focus on individual methods, lacking a comprehensive overview of the entire generative process. This paper addresses this gap by providing an in-depth survey of human motion video generation, encompassing over ten sub-tasks, and detailing the five key phases of the generation process: input, motion planning, motion video generation, refinement, and output. Notably, this is the first survey that discusses the potential of large language models in enhancing human motion video generation. Our survey reviews the latest developments and technological trends in human motion video generation across three primary modalities: vision, text, and audio. By covering over two hundred papers, we offer a thorough overview of the field and highlight milestone works that have driven significant technological breakthroughs. Our goal for this survey is to unveil the prospects of human motion video generation and serve as a valuable resource for advancing the comprehensive applications of digital humans. A complete list of the models examined in this survey is available in Our Repository https://github.com/Winn1y/Awesome-Human-Motion-Video-Generation.
We present a system for automatic multi-axis perceptual quality prediction of generative audio, developed for Track 2 of the AudioMOS Challenge 2025. The task is to predict four Audio Aesthetic Scores--Production Quality, Production Complexity, Content Enjoyment, and Content Usefulness--for audio generated by text-to-speech (TTS), text-to-audio (TTA), and text-to-music (TTM) systems. A main challenge is the domain shift between natural training data and synthetic evaluation data. To address this, we combine BEATs, a pretrained transformer-based audio representation model, with a multi-branch long short-term memory (LSTM) predictor and use a triplet loss with buffer-based sampling to structure the embedding space by perceptual similarity. Our results show that this improves embedding discriminability and generalization, enabling domain-robust audio quality assessment without synthetic training data.
One particularly promising use case of Large Language Models (LLMs) for recommendation is the automatic generation of Natural Language (NL) user taste profiles from consumption data. These profiles offer interpretable and editable alternatives to opaque collaborative filtering representations, enabling greater transparency and user control. However, it remains unclear whether users consider these profiles to be an accurate representation of their taste, which is crucial for trust and usability. Moreover, because LLMs inherit societal and data-driven biases, profile quality may systematically vary across user and item characteristics. In this paper, we study this issue in the context of music streaming, where personalization is challenged by a large and culturally diverse catalog. We conduct a user study in which participants rate NL profiles generated from their own listening histories. We analyze whether identification with the profiles is biased by user attributes (e.g., mainstreamness, taste diversity) and item features (e.g., genre, country of origin). We also compare these patterns to those observed when using the profiles in a downstream recommendation task. Our findings highlight both the potential and limitations of scrutable, LLM-based profiling in personalized systems.