Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.




Many recent studies have proposed general-purpose foundation models designed for a variety of time series analysis tasks. While several established datasets already exist for evaluating these models, previous works frequently introduce their models in conjunction with new datasets, limiting opportunities for direct, independent comparisons and obscuring insights into the relative strengths of different methods. Additionally, prior evaluations often cover numerous tasks simultaneously, assessing a broad range of model abilities without clearly pinpointing which capabilities contribute to overall performance. To address these gaps, we formalize and evaluate 3 tasks that test a model's ability to describe time series using generic natural language: (1) recognition (True/False question-answering), (2) differentiation (multiple choice question-answering), and (3) generation (open-ended natural language description). We then unify 4 recent datasets to enable head-to-head model comparisons on each task. Experimentally, in evaluating 13 state-of-the-art language, vision--language, and time series--language models, we find that (1) popular language-only methods largely underperform, indicating a need for time series-specific architectures, (2) VLMs are quite successful, as expected, identifying the value of vision models for these tasks and (3) pretrained multimodal time series--language models successfully outperform LLMs, but still have significant room for improvement. We also find that all approaches exhibit clear fragility in a range of robustness tests. Overall, our benchmark provides a standardized evaluation on a task necessary for time series reasoning systems.
Despite significant medical advancements, cancer remains the second leading cause of death, with over 600,000 deaths per year in the US. One emerging field, pathway analysis, is promising but still relies on manually derived wet lab data, which is time-consuming to acquire. This work proposes an efficient, effective end-to-end framework for Artificial Intelligence (AI) based pathway analysis that predicts both cancer severity and mutation progression, thus recommending possible treatments. The proposed technique involves a novel combination of time-series machine learning models and pathway analysis. First, mutation sequences were isolated from The Cancer Genome Atlas (TCGA) Database. Then, a novel preprocessing algorithm was used to filter key mutations by mutation frequency. This data was fed into a Recurrent Neural Network (RNN) that predicted cancer severity. Then, the model probabilistically used the RNN predictions, information from the preprocessing algorithm, and multiple drug-target databases to predict future mutations and recommend possible treatments. This framework achieved robust results and Receiver Operating Characteristic (ROC) curves (a key statistical metric) with accuracies greater than 60%, similar to existing cancer diagnostics. In addition, preprocessing played an instrumental role in isolating important mutations, demonstrating that each cancer stage studied may contain on the order of a few-hundred key driver mutations, consistent with current research. Heatmaps based on predicted gene frequency were also generated, highlighting key mutations in each cancer. Overall, this work is the first to propose an efficient, cost-effective end-to-end framework for projecting cancer progression and providing possible treatments without relying on expensive, time-consuming wet lab work.
Understanding causal relations between temporal variables is a central challenge in time series analysis, particularly when the full causal structure is unknown. Even when the full causal structure cannot be fully specified, experts often succeed in providing a high-level abstraction of the causal graph, known as a summary causal graph, which captures the main causal relations between different time series while abstracting away micro-level details. In this work, we present conditions that guarantee the orientability of micro-level edges between temporal variables given the background knowledge encoded in a summary causal graph and assuming having access to a faithful and causally sufficient distribution with respect to the true unknown graph. Our results provide theoretical guarantees for edge orientation at the micro-level, even in the presence of cycles or bidirected edges at the macro-level. These findings offer practical guidance for leveraging SCGs to inform causal discovery in complex temporal systems and highlight the value of incorporating expert knowledge to improve causal inference from observational time series data.
TimeCluster is a visual analytics technique for discovering structure in long multivariate time series by projecting overlapping windows of data into a low-dimensional space. We show that, when Principal Component Analysis (PCA) is chosen as the dimensionality reduction technique, this procedure is mathematically equivalent to classical linear subspace identification (block-Hankel matrix plus Singular Vector Decomposition (SVD)). In both approaches, the same low-dimensional linear subspace is extracted from the time series data. We first review the TimeCluster method and the theory of subspace system identification. Then we show that forming the sliding-window matrix of a time series yields a Hankel matrix, so applying PCA (via SVD) to this matrix recovers the same principal directions as subspace identification. Thus the cluster coordinates from TimeCluster coincide with the subspace identification methods. We present experiments on synthetic and real dynamical signals confirming that the two embeddings coincide. Finally, we explore and discuss future opportunities enabled by this equivalence, including forecasting from the identified state space, streaming/online extensions, incorporating and visualising external inputs and robust techniques for displaying underlying trends in corrupted data.



Astronomical time series from large-scale surveys like LSST are often irregularly sampled and incomplete, posing challenges for classification and anomaly detection. We introduce a new framework based on Neural Stochastic Delay Differential Equations (Neural SDDEs) that combines stochastic modeling with neural networks to capture delayed temporal dynamics and handle irregular observations. Our approach integrates a delay-aware neural architecture, a numerical solver for SDDEs, and mechanisms to robustly learn from noisy, sparse sequences. Experiments on irregularly sampled astronomical data demonstrate strong classification accuracy and effective detection of novel astrophysical events, even with partial labels. This work highlights Neural SDDEs as a principled and practical tool for time series analysis under observational constraints.




Accounting for inter-individual variability in brain function is key to precision medicine. Here, by considering functional inter-individual variability as meaningful data rather than noise, we introduce VarCoNet, an enhanced self-supervised framework for robust functional connectome (FC) extraction from resting-state fMRI (rs-fMRI) data. VarCoNet employs self-supervised contrastive learning to exploit inherent functional inter-individual variability, serving as a brain function encoder that generates FC embeddings readily applicable to downstream tasks even in the absence of labeled data. Contrastive learning is facilitated by a novel augmentation strategy based on segmenting rs-fMRI signals. At its core, VarCoNet integrates a 1D-CNN-Transformer encoder for advanced time-series processing, enhanced with a robust Bayesian hyperparameter optimization. Our VarCoNet framework is evaluated on two downstream tasks: (i) subject fingerprinting, using rs-fMRI data from the Human Connectome Project, and (ii) autism spectrum disorder (ASD) classification, using rs-fMRI data from the ABIDE I and ABIDE II datasets. Using different brain parcellations, our extensive testing against state-of-the-art methods, including 13 deep learning methods, demonstrates VarCoNet's superiority, robustness, interpretability, and generalizability. Overall, VarCoNet provides a versatile and robust framework for FC analysis in rs-fMRI.
Background: Quantitative stress perfusion cardiovascular magnetic resonance (CMR) is a powerful tool for assessing myocardial ischemia. Motion correction is essential for accurate pixel-wise mapping but traditional registration-based methods are slow and sensitive to acquisition variability, limiting robustness and scalability. Methods: We developed an unsupervised deep learning-based motion correction pipeline that replaces iterative registration with efficient one-shot estimation. The method corrects motion in three steps and uses robust principal component analysis to reduce contrast-related effects. It aligns the perfusion series and auxiliary images (arterial input function and proton density-weighted series). Models were trained and validated on multivendor data from 201 patients, with 38 held out for testing. Performance was assessed via temporal alignment and quantitative perfusion values, compared to a previously published registration-based method. Results: The deep learning approach significantly improved temporal smoothness of time-intensity curves (p<0.001). Myocardial alignment (Dice = 0.92 (0.04) and 0.91 (0.05)) was comparable to the baseline and superior to before registration (Dice = 0.80 (0.09), p<0.001). Perfusion maps showed reduced motion, with lower standard deviation in the myocardium (0.52 (0.39) ml/min/g) compared to baseline (0.55 (0.44) ml/min/g). Processing time was reduced 15-fold. Conclusion: This deep learning pipeline enables fast, robust motion correction for stress perfusion CMR, improving accuracy across dynamic and auxiliary images. Trained on multivendor data, it generalizes across sequences and may facilitate broader clinical adoption of quantitative perfusion imaging.
Modern time series analysis demands frameworks that are flexible, efficient, and extensible. However, many existing Python libraries exhibit limitations in modularity and in their native support for irregular, multi-source, or sparse data. We introduce pyFAST, a research-oriented PyTorch framework that explicitly decouples data processing from model computation, fostering a cleaner separation of concerns and facilitating rapid experimentation. Its data engine is engineered for complex scenarios, supporting multi-source loading, protein sequence handling, efficient sequence- and patch-level padding, dynamic normalization, and mask-based modeling for both imputation and forecasting. pyFAST integrates LLM-inspired architectures for the alignment-free fusion of sparse data sources and offers native sparse metrics, specialized loss functions, and flexible exogenous data fusion. Training utilities include batch-based streaming aggregation for evaluation and device synergy to maximize computational efficiency. A comprehensive suite of classical and deep learning models (Linears, CNNs, RNNs, Transformers, and GNNs) is provided within a modular architecture that encourages extension. Released under the MIT license at GitHub, pyFAST provides a compact yet powerful platform for advancing time series research and applications.
Graph neural networks (GNNs) have emerged as a state-of-the-art data-driven tool for modeling connectivity data of graph-structured complex networks and integrating information of their nodes and edges in space and time. However, as of yet, the analysis of social networks using the time series of people's mobile connectivity data has not been extensively investigated. In the present study, we investigate four snapshot - based temporal GNNs in predicting the phone call and SMS activity between users of a mobile communication network. In addition, we develop a simple non - GNN baseline model using recently proposed EdgeBank method. Our analysis shows that the ROLAND temporal GNN outperforms the baseline model in most cases, whereas the other three GNNs perform on average worse than the baseline. The results show that GNN based approaches hold promise in the analysis of temporal social networks through mobile connectivity data. However, due to the relatively small performance margin between ROLAND and the baseline model, further research is required on specialized GNN architectures for temporal social network analysis.
Motion sensor time-series are central to human activity recognition (HAR), with applications in health, sports, and smart devices. However, existing methods are trained for fixed activity sets and require costly retraining when new behaviours or sensor setups appear. Recent attempts to use large language models (LLMs) for HAR, typically by converting signals into text or images, suffer from limited accuracy and lack verifiable interpretability. We propose ZARA, the first agent-based framework for zero-shot, explainable HAR directly from raw motion time-series. ZARA integrates an automatically derived pair-wise feature knowledge base that captures discriminative statistics for every activity pair, a multi-sensor retrieval module that surfaces relevant evidence, and a hierarchical agent pipeline that guides the LLM to iteratively select features, draw on this evidence, and produce both activity predictions and natural-language explanations. ZARA enables flexible and interpretable HAR without any fine-tuning or task-specific classifiers. Extensive experiments on 8 HAR benchmarks show that ZARA achieves SOTA zero-shot performance, delivering clear reasoning while exceeding the strongest baselines by 2.53x in macro F1. Ablation studies further confirm the necessity of each module, marking ZARA as a promising step toward trustworthy, plug-and-play motion time-series analysis. Our codes are available at https://github.com/zechenli03/ZARA.