Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
Apr 19, 2025
Abstract:Time series analysis has found widespread applications in areas such as weather forecasting, anomaly detection, and healthcare. However, real-world sequential data often exhibit a superimposed state of various fluctuation patterns, including hourly, daily, and monthly frequencies. Traditional decomposition techniques struggle to effectively disentangle these multiple fluctuation patterns from the seasonal components, making time series analysis challenging. Surpassing the existing multi-period decoupling paradigms, this paper introduces a novel perspective based on energy distribution within the temporal-spectrum space. By adaptively quantifying observed sequences into continuous frequency band intervals, the proposed approach reconstructs fluctuation patterns across diverse periods without relying on domain-specific prior knowledge. Building upon this innovative strategy, we propose Pets, an enhanced architecture that is adaptable to arbitrary model structures. Pets integrates a Fluctuation Pattern Assisted (FPA) module and a Context-Guided Mixture of Predictors (MoP). The FPA module facilitates information fusion among diverse fluctuation patterns by capturing their dependencies and progressively modeling these patterns as latent representations at each layer. Meanwhile, the MoP module leverages these compound pattern representations to guide and regulate the reconstruction of distinct fluctuations hierarchically. Pets achieves state-of-the-art performance across various tasks, including forecasting, imputation, anomaly detection, and classification, while demonstrating strong generalization and robustness.
Via

Apr 24, 2025
Abstract:This article investigates the use of Machine Learning and Deep Learning models in multivariate time series analysis within financial markets. It compares small and big data approaches, focusing on their distinct challenges and the benefits of scaling. Traditional methods such as SVMs are contrasted with modern architectures like ConvTimeNet. The results show the importance of using and understanding Big Data in depth in the analysis and prediction of financial time series.
Via

Apr 30, 2025
Abstract:Identifying relationships among stochastic processes is a key goal in disciplines that deal with complex temporal systems, such as economics. While the standard toolkit for multivariate time series analysis has many advantages, it can be difficult to capture nonlinear dynamics using linear vector autoregressive models. This difficulty has motivated the development of methods for variable selection, causal discovery, and graphical modeling for nonlinear time series, which routinely employ nonparametric tests for conditional independence. In this paper, we introduce the first framework for conditional independence testing that works with a single realization of a nonstationary nonlinear process. The key technical ingredients are time-varying nonlinear regression, time-varying covariance estimation, and a distribution-uniform strong Gaussian approximation.
Via

May 15, 2025
Abstract:Unsupervised domain adaptation (UDA) for time series data remains a critical challenge in deep learning, with traditional pseudo-labeling strategies failing to capture temporal patterns and channel-wise shifts between domains, producing sub-optimal pseudo-labels. As such, we introduce TransPL, a novel approach that addresses these limitations by modeling the joint distribution $P(\mathbf{X}, y)$ of the source domain through code transition matrices, where the codes are derived from vector quantization (VQ) of time series patches. Our method constructs class- and channel-wise code transition matrices from the source domain and employs Bayes' rule for target domain adaptation, generating pseudo-labels based on channel-wise weighted class-conditional likelihoods. TransPL offers three key advantages: explicit modeling of temporal transitions and channel-wise shifts between different domains, versatility towards different UDA scenarios (e.g., weakly-supervised UDA), and explainable pseudo-label generation. We validate TransPL's effectiveness through extensive analysis on four time series UDA benchmarks and confirm that it consistently outperforms state-of-the-art pseudo-labeling methods by a strong margin (6.1% accuracy improvement, 4.9% F1 improvement), while providing interpretable insights into the domain adaptation process through its learned code transition matrices.
* ICML 2025 Accept
Via

May 19, 2025
Abstract:Causal networks offer an intuitive framework to understand influence structures within time series systems. However, the presence of cycles can obscure dynamic relationships and hinder hierarchical analysis. These networks are typically identified through multivariate predictive modelling, but enforcing acyclic constraints significantly increases computational and analytical complexity. Despite recent advances, there remains a lack of simple, flexible approaches that are easily tailorable to specific problem instances. We propose an evolutionary approach to fitting acyclic vector autoregressive processes and introduces a novel hierarchical representation that directly models structural elements within a time series system. On simulated datasets, our model retains most of the predictive accuracy of unconstrained models and outperforms permutation-based alternatives. When applied to a dataset of 100 cryptocurrency return series, our method generates acyclic causal networks capturing key structural properties of the unconstrained model. The acyclic networks are approximately sub-graphs of the unconstrained networks, and most of the removed links originate from low-influence nodes. Given the high levels of feature preservation, we conclude that this cryptocurrency price system functions largely hierarchically. Our findings demonstrate a flexible, intuitive approach for identifying hierarchical causal networks in time series systems, with broad applications to fields like econometrics and social network analysis.
Via

May 26, 2025
Abstract:Multiple change point (MCP) detection in non-stationary time series is challenging due to the variety of underlying patterns. To address these challenges, we propose a novel algorithm that integrates Active Learning (AL) with Deep Gaussian Processes (DGPs) for robust MCP detection. Our method leverages spectral analysis to identify potential changes and employs AL to strategically select new sampling points for improved efficiency. By incorporating the modeling flexibility of DGPs with the change-identification capabilities of spectral methods, our approach adapts to diverse spectral change behaviors and effectively localizes multiple change points. Experiments on both simulated and real-world data demonstrate that our method outperforms existing techniques in terms of detection accuracy and sampling efficiency for non-stationary time series.
Via

May 02, 2025
Abstract:Urban transportation plays a vital role in modern city life, affecting how efficiently people and goods move around. This study analyzes transportation patterns using two datasets: the NYC Taxi Trip dataset from New York City and the Pathao Food Trip dataset from Dhaka, Bangladesh. Our goal is to identify key trends in demand, peak times, and important geographical hotspots. We start with Exploratory Data Analysis (EDA) to understand the basic characteristics of the datasets. Next, we perform geospatial analysis to map out high-demand and low-demand regions. We use the SARIMAX model for time series analysis to forecast demand patterns, capturing seasonal and weekly variations. Lastly, we apply clustering techniques to identify significant areas of high and low demand. Our findings provide valuable insights for optimizing fleet management and resource allocation in both passenger transport and food delivery services. These insights can help improve service efficiency, better meet customer needs, and enhance urban transportation systems in diverse urban environments.
Via

Jun 13, 2025
Abstract:The cross-Modality Domain Adaptation (crossMoDA) challenge series, initiated in 2021 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), focuses on unsupervised cross-modality segmentation, learning from contrast-enhanced T1 (ceT1) and transferring to T2 MRI. The task is an extreme example of domain shift chosen to serve as a meaningful and illustrative benchmark. From a clinical application perspective, it aims to automate Vestibular Schwannoma (VS) and cochlea segmentation on T2 scans for more cost-effective VS management. Over time, the challenge objectives have evolved to enhance its clinical relevance. The challenge evolved from using single-institutional data and basic segmentation in 2021 to incorporating multi-institutional data and Koos grading in 2022, and by 2023, it included heterogeneous routine data and sub-segmentation of intra- and extra-meatal tumour components. In this work, we report the findings of the 2022 and 2023 editions and perform a retrospective analysis of the challenge progression over the years. The observations from the successive challenge contributions indicate that the number of outliers decreases with an expanding dataset. This is notable since the diversity of scanning protocols of the datasets concurrently increased. The winning approach of the 2023 edition reduced the number of outliers on the 2021 and 2022 testing data, demonstrating how increased data heterogeneity can enhance segmentation performance even on homogeneous data. However, the cochlea Dice score declined in 2023, likely due to the added complexity from tumour sub-annotations affecting overall segmentation performance. While progress is still needed for clinically acceptable VS segmentation, the plateauing performance suggests that a more challenging cross-modal task may better serve future benchmarking.
Via

May 16, 2025
Abstract:Time series forecasting is important for applications spanning energy markets, climate analysis, and traffic management. However, existing methods struggle to effectively integrate exogenous texts and align them with the probabilistic nature of large language models (LLMs). Current approaches either employ shallow text-time series fusion via basic prompts or rely on deterministic numerical decoding that conflict with LLMs' token-generation paradigm, which limits contextual awareness and distribution modeling. To address these limitations, we propose CAPTime, a context-aware probabilistic multimodal time series forecasting method that leverages text-informed abstraction and autoregressive LLM decoding. Our method first encodes temporal patterns using a pretrained time series encoder, then aligns them with textual contexts via learnable interactions to produce joint multimodal representations. By combining a mixture of distribution experts with frozen LLMs, we enable context-aware probabilistic forecasting while preserving LLMs' inherent distribution modeling capabilities. Experiments on diverse time series forecasting tasks demonstrate the superior accuracy and generalization of CAPTime, particularly in multimodal scenarios. Additional analysis highlights its robustness in data-scarce scenarios through hybrid probabilistic decoding.
* 13 pages, 2 figures
Via

May 13, 2025
Abstract:This paper shows a comprehensive analysis of three algorithms (Time Series, Random Forest (RF) and Deep Reinforcement Learning) into three inventory models (the Lost Sales, Dual-Sourcing and Multi-Echelon Inventory Model). These methodologies are applied in the supermarket context. The main purpose is to analyse efficient methods for the data-driven. Their possibility, potential and current challenges are taken into consideration in this report. By comparing the results in each model, the effectiveness of each algorithm is evaluated based on several key performance indicators, including forecast accuracy, adaptability to market changes, and overall impact on inventory costs and customer satisfaction levels. The data visualization tools and statistical metrics are the indicators for the comparisons and show some obvious trends and patterns that can guide decision-making in inventory management. These tools enable managers to not only track the performance of different algorithms in real-time but also to drill down into specific data points to understand the underlying causes of inventory fluctuations. This level of detail is crucial for pinpointing inefficiencies and areas for improvement within the supply chain.
Via
