National Chiao Tung University, Taiwan
Abstract:Time series data in real-world applications such as healthcare, climate modeling, and finance are often irregular, multimodal, and messy, with varying sampling rates, asynchronous modalities, and pervasive missingness. However, existing benchmarks typically assume clean, regularly sampled, unimodal data, creating a significant gap between research and real-world deployment. We introduce Time-IMM, a dataset specifically designed to capture cause-driven irregularity in multimodal multivariate time series. Time-IMM represents nine distinct types of time series irregularity, categorized into trigger-based, constraint-based, and artifact-based mechanisms. Complementing the dataset, we introduce IMM-TSF, a benchmark library for forecasting on irregular multimodal time series, enabling asynchronous integration and realistic evaluation. IMM-TSF includes specialized fusion modules, including a timestamp-to-text fusion module and a multimodality fusion module, which support both recency-aware averaging and attention-based integration strategies. Empirical results demonstrate that explicitly modeling multimodality on irregular time series data leads to substantial gains in forecasting performance. Time-IMM and IMM-TSF provide a foundation for advancing time series analysis under real-world conditions. The dataset is publicly available at https://www.kaggle.com/datasets/blacksnail789521/time-imm/data, and the benchmark library can be accessed at https://anonymous.4open.science/r/IMMTSF_NeurIPS2025.
Abstract:Tabular data serve as a fundamental and ubiquitous representation of structured information in numerous real-world applications, e.g., finance and urban planning. In the realm of tabular imbalanced applications, data imbalance has been investigated in classification tasks with insufficient instances in certain labels, causing the model's ineffective generalizability. However, the imbalance issue of tabular regression tasks is underexplored, and yet is critical due to unclear boundaries for continuous labels and simplifying assumptions in existing imbalance regression work, which often rely on known and balanced test distributions. Such assumptions may not hold in practice and can lead to performance degradation. To address these issues, we propose MATI: Mixture Experts with Test-Time Self-Supervised Aggregation for Tabular Imbalance Regression, featuring two key innovations: (i) the Region-Aware Mixture Expert, which adopts a Gaussian Mixture Model to capture the underlying related regions. The statistical information of each Gaussian component is then used to synthesize and train region-specific experts to capture the unique characteristics of their respective regions. (ii) Test-Time Self-Supervised Expert Aggregation, which dynamically adjusts region expert weights based on test data features to reinforce expert adaptation across varying test distributions. We evaluated MATI on four real-world tabular imbalance regression datasets, including house pricing, bike sharing, and age prediction. To reflect realistic deployment scenarios, we adopted three types of test distributions: a balanced distribution with uniform target frequencies, a normal distribution that follows the training data, and an inverse distribution that emphasizes rare target regions. On average across these three test distributions, MATI achieved a 7.1% improvement in MAE compared to existing methods.
Abstract:Tailoring structured financial reports from companies' earnings releases is crucial for understanding financial performance and has been widely adopted in real-world analytics. However, existing summarization methods often generate broad, high-level summaries, which may lack the precision and detail required for financial reports that typically focus on specific, structured sections. While Large Language Models (LLMs) hold promise, generating reports adhering to predefined multi-section templates remains challenging. This paper investigates two LLM-based approaches popular in industry for generating templated financial reports: an agentic information retrieval (IR) framework and a decomposed IR approach, namely AgenticIR and DecomposedIR. The AgenticIR utilizes collaborative agents prompted with the full template. In contrast, the DecomposedIR approach applies a prompt chaining workflow to break down the template and reframe each section as a query answered by the LLM using the earnings release. To quantitatively assess the generated reports, we evaluated both methods in two scenarios: one using a financial dataset without direct human references, and another with a weather-domain dataset featuring expert-written reports. Experimental results show that while AgenticIR may excel in orchestrating tasks and generating concise reports through agent collaboration, DecomposedIR statistically significantly outperforms AgenticIR approach in providing broader and more detailed coverage in both scenarios, offering reflection on the utilization of the agentic framework in real-world applications.
Abstract:The demand for property valuation has attracted significant attention from sellers, buyers, and customers applying for loans. Reviews of existing approaches have revealed shortcomings in terms of not being able to handle missing value situations, as well as lacking interpretability, which means they cannot be used in real-world applications. To address these challenges, we propose an LLM-Generated EXplainable PRopErty valuation SyStem with neighbor imputation called EXPRESS, which provides the customizable missing value imputation technique, and addresses the opaqueness of prediction by providing the feature-wise explanation generated by LLM. The dynamic nearest neighbor search finds similar properties depending on different application scenarios by property configuration set by users (e.g., house age as criteria for the house in rural areas, and locations for buildings in urban areas). Motivated by the human appraisal procedure, we generate feature-wise explanations to provide users with a more intuitive understanding of the prediction results.
Abstract:With the rapid advancement of generative AI, AI-generated images have become increasingly realistic, raising concerns about creativity, misinformation, and content authenticity. Detecting such images and identifying their source models has become a critical challenge in ensuring the integrity of digital media. This paper tackles the detection of AI-generated images and identifying their source models using CNN and CLIP-ViT classifiers. For the CNN-based classifier, we leverage EfficientNet-B0 as the backbone and feed with RGB channels, frequency features, and reconstruction errors, while for CLIP-ViT, we adopt a pretrained CLIP image encoder to extract image features and SVM to perform classification. Evaluated on the Defactify 4 dataset, our methods demonstrate strong performance in both tasks, with CLIP-ViT showing superior robustness to image perturbations. Compared to baselines like AEROBLADE and OCC-CLIP, our approach achieves competitive results. Notably, our method ranked Top-3 overall in the Defactify 4 competition, highlighting its effectiveness and generalizability. All of our implementations can be found in https://github.com/uuugaga/Defactify_4
Abstract:Stackelberg games, widely applied in domains like economics and security, involve asymmetric interactions where a leader's strategy drives follower responses. Accurately modeling these dynamics allows domain experts to optimize strategies in interactive scenarios, such as turn-based sports like badminton. In multi-agent systems, agent behaviors are interdependent, and traditional Multi-Agent Imitation Learning (MAIL) methods often fail to capture these complex interactions. Correlated policies, which account for opponents' strategies, are essential for accurately modeling such dynamics. However, even methods designed for learning correlated policies, like CoDAIL, struggle in Stackelberg games due to their asymmetric decision-making, where leaders and followers cannot simultaneously account for each other's actions, often leading to non-correlated policies. Furthermore, existing MAIL methods that match occupancy measures or use adversarial techniques like GAIL or Inverse RL face scalability challenges, particularly in high-dimensional environments, and suffer from unstable training. To address these challenges, we propose a correlated policy occupancy measure specifically designed for Stackelberg games and introduce the Latent Stackelberg Differential Network (LSDN) to match it. LSDN models two-agent interactions as shared latent state trajectories and uses multi-output Geometric Brownian Motion (MO-GBM) to effectively capture joint policies. By leveraging MO-GBM, LSDN disentangles environmental influences from agent-driven transitions in latent space, enabling the simultaneous learning of interdependent policies. This design eliminates the need for adversarial training and simplifies the learning process. Extensive experiments on Iterative Matrix Games and multi-agent particle environments demonstrate that LSDN can better reproduce complex interaction dynamics than existing MAIL methods.
Abstract:Machine Translation (MT) has been predominantly designed for sentence-level translation using transformer-based architectures. While next-token prediction based Large Language Models (LLMs) demonstrate strong capabilities in long-text translation, non-extensive language models often suffer from omissions and semantic inconsistencies when processing paragraphs. Existing preference alignment methods improve sentence-level translation but fail to ensure coherence over extended contexts due to the myopic nature of next-token generation. We introduce Plan2Align, a test-time alignment framework that treats translation as a predictive planning problem, adapting Model Predictive Control to iteratively refine translation outputs. Experiments on WMT24 Discourse-Level Literary Translation show that Plan2Align significantly improves paragraph-level translation, achieving performance surpassing or on par with the existing training-time and test-time alignment methods on LLaMA-3.1 8B.
Abstract:Tabular data are fundamental in common machine learning applications, ranging from finance to genomics and healthcare. This paper focuses on tabular regression tasks, a field where deep learning (DL) methods are not consistently superior to machine learning (ML) models due to the challenges posed by irregular target functions inherent in tabular data, causing sensitive label changes with minor variations from features. To address these issues, we propose a novel Arithmetic-Aware Pre-training and Adaptive-Regularized Fine-tuning framework (APAR), which enables the model to fit irregular target function in tabular data while reducing the negative impact of overfitting. In the pre-training phase, APAR introduces an arithmetic-aware pretext objective to capture intricate sample-wise relationships from the perspective of continuous labels. In the fine-tuning phase, a consistency-based adaptive regularization technique is proposed to self-learn appropriate data augmentation. Extensive experiments across 10 datasets demonstrated that APAR outperforms existing GBDT-, supervised NN-, and pretrain-finetune NN-based methods in RMSE (+9.43% $\sim$ 20.37%), and empirically validated the effects of pre-training tasks, including the study of arithmetic operations. Our code and data are publicly available at https://github.com/johnnyhwu/APAR.
Abstract:Traditional time series forecasting models mainly rely on historical numeric values to predict future outcomes.While these models have shown promising results, they often overlook the rich information available in other modalities, such as textual descriptions of special events, which can provide crucial insights into future dynamics.However, research that jointly incorporates text in time series forecasting remains relatively underexplored compared to other cross-modality work. Additionally, the modality gap between time series data and textual information poses a challenge for multimodal learning. To address this task, we propose Text2Freq, a cross-modality model that integrates text and time series data via the frequency domain. Specifically, our approach aligns textual information to the low-frequency components of time series data, establishing more effective and interpretable alignments between these two modalities. Our experiments on paired datasets of real-world stock prices and synthetic texts show that Text2Freq achieves state-of-the-art performance, with its adaptable architecture encouraging future research in this field.
Abstract:Multivariate time-series data in fields like healthcare and industry are informative but challenging due to high dimensionality and lack of labels. Recent self-supervised learning methods excel in learning rich representations without labels but struggle with disentangled embeddings and inductive bias issues like transformation-invariance. To address these challenges, we introduce TimeDRL, a framework for multivariate time-series representation learning with dual-level disentangled embeddings. TimeDRL features: (i) disentangled timestamp-level and instance-level embeddings using a [CLS] token strategy; (ii) timestamp-predictive and instance-contrastive tasks for representation learning; and (iii) avoidance of augmentation methods to eliminate inductive biases. Experiments on forecasting and classification datasets show TimeDRL outperforms existing methods, with further validation in semi-supervised settings with limited labeled data.