Text classification is the process of categorizing text documents into predefined categories or labels.
We introduce and evaluate Stated Preference for Interaction and Continued Engagement (SPICE), a simple diagnostic signal elicited by asking a Large Language Model a YES or NO question about its willingness to re-engage with a user's behavior after reviewing a short transcript. In a study using a 3-tone (friendly, unclear, abusive) by 10-interaction stimulus set, we tested four open-weight chat models across four framing conditions, resulting in 480 trials. Our findings show that SPICE sharply discriminates by user tone. Friendly interactions yielded a near-unanimous preference to continue (97.5% YES), while abusive interactions yielded a strong preference to discontinue (17.9% YES), with unclear interactions falling in between (60.4% YES). This core association remains decisive under multiple dependence-aware statistical tests, including Rao-Scott adjustment and cluster permutation tests. Furthermore, we demonstrate that SPICE provides a distinct signal from abuse classification. In trials where a model failed to identify abuse, it still overwhelmingly stated a preference not to continue the interaction (81% of the time). An exploratory analysis also reveals a significant interaction effect: a preamble describing the study context significantly impacts SPICE under ambiguity, but only when transcripts are presented as a single block of text rather than a multi-turn chat. The results validate SPICE as a robust, low-overhead, and reproducible tool for auditing model dispositions, complementing existing metrics by offering a direct, relational signal of a model's state. All stimuli, code, and analysis scripts are released to support replication.
The rapid progress of auto-regressive vision-language models (VLMs) has inspired growing interest in vision-language-action models (VLA) for robotic manipulation. Recently, masked diffusion models, a paradigm distinct from autoregressive models, have begun to demonstrate competitive performance in text generation and multimodal applications, leading to the development of a series of diffusion-based VLMs (d-VLMs). However, leveraging such models for robot policy learning remains largely unexplored. In this work, we present LLaDA-VLA, the first Vision-Language-Diffusion-Action model built upon pretrained d-VLMs for robotic manipulation. To effectively adapt d-VLMs to robotic domain, we introduce two key designs: (1) a localized special-token classification strategy that replaces full-vocabulary classification with special action token classification, reducing adaptation difficulty; (2) a hierarchical action-structured decoding strategy that decodes action sequences hierarchically considering the dependencies within and across actions. Extensive experiments demonstrate that LLaDA-VLA significantly outperforms state-of-the-art VLAs on both simulation and real-world robots.
Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.
Recent advances in multimodal AI have enabled progress in detecting synthetic and out-of-context content. However, existing efforts largely overlook the intent behind AI-generated images. To fill this gap, we introduce S-HArM, a multimodal dataset for intent-aware classification, comprising 9,576 "in the wild" image-text pairs from Twitter/X and Reddit, labeled as Humor/Satire, Art, or Misinformation. Additionally, we explore three prompting strategies (image-guided, description-guided, and multimodally-guided) to construct a large-scale synthetic training dataset with Stable Diffusion. We conduct an extensive comparative study including modality fusion, contrastive learning, reconstruction networks, attention mechanisms, and large vision-language models. Our results show that models trained on image- and multimodally-guided data generalize better to "in the wild" content, due to preserved visual context. However, overall performance remains limited, highlighting the complexity of inferring intent and the need for specialized architectures.
Understanding 3D medical image volumes is critical in the medical field, yet existing 3D medical convolution and transformer-based self-supervised learning (SSL) methods often lack deep semantic comprehension. Recent advancements in multimodal large language models (MLLMs) provide a promising approach to enhance image understanding through text descriptions. To leverage these 2D MLLMs for improved 3D medical image understanding, we propose Med3DInsight, a novel pretraining framework that integrates 3D image encoders with 2D MLLMs via a specially designed plane-slice-aware transformer module. Additionally, our model employs a partial optimal transport based alignment, demonstrating greater tolerance to noise introduced by potential noises in LLM-generated content. Med3DInsight introduces a new paradigm for scalable multimodal 3D medical representation learning without requiring human annotations. Extensive experiments demonstrate our state-of-the-art performance on two downstream tasks, i.e., segmentation and classification, across various public datasets with CT and MRI modalities, outperforming current SSL methods. Med3DInsight can be seamlessly integrated into existing 3D medical image understanding networks, potentially enhancing their performance. Our source code, generated datasets, and pre-trained models will be available at https://github.com/Qybc/Med3DInsight.
This paper presents our team's solution to Shared Task 7 of NLPCC-2025, which focuses on sentence-level gender bias detection and mitigation in Chinese. The task aims to promote fairness and controllability in natural language generation by automatically detecting, classifying, and mitigating gender bias. To address this challenge, we adopt a fine-tuning approach based on large language models (LLMs), efficiently adapt to the bias detection task via Low-Rank Adaptation (LoRA). In terms of data processing, we construct a more balanced training set to alleviate class imbalance and introduce heterogeneous samples from multiple sources to enhance model generalization. For the detection and classification sub-tasks, we employ a majority voting strategy that integrates outputs from multiple expert models to boost performance. Additionally, to improve bias generation detection and mitigation, we design a multi-temperature sampling mechanism to capture potential variations in bias expression styles. Experimental results demonstrate the effectiveness of our approach in bias detection, classification, and mitigation. Our method ultimately achieves an average score of 47.90%, ranking fourth in the shared task.
Sarcasm, a common feature of human communication, poses challenges in interpersonal interactions and human-machine interactions. Linguistic research has highlighted the importance of prosodic cues, such as variations in pitch, speaking rate, and intonation, in conveying sarcastic intent. Although previous work has focused on text-based sarcasm detection, the role of speech data in recognizing sarcasm has been underexplored. Recent advancements in speech technology emphasize the growing importance of leveraging speech data for automatic sarcasm recognition, which can enhance social interactions for individuals with neurodegenerative conditions and improve machine understanding of complex human language use, leading to more nuanced interactions. This systematic review is the first to focus on speech-based sarcasm recognition, charting the evolution from unimodal to multimodal approaches. It covers datasets, feature extraction, and classification methods, and aims to bridge gaps across diverse research domains. The findings include limitations in datasets for sarcasm recognition in speech, the evolution of feature extraction techniques from traditional acoustic features to deep learning-based representations, and the progression of classification methods from unimodal approaches to multimodal fusion techniques. In so doing, we identify the need for greater emphasis on cross-cultural and multilingual sarcasm recognition, as well as the importance of addressing sarcasm as a multimodal phenomenon, rather than a text-based challenge.
The proliferation of Large Language Models (LLMs) in real-world applications poses unprecedented risks of generating harmful, biased, or misleading information to vulnerable populations including LGBTQ+ individuals, single parents, and marginalized communities. While existing safety approaches rely on post-hoc filtering or generic alignment techniques, they fail to proactively prevent harmful outputs at the generation source. This paper introduces PromptGuard, a novel modular prompting framework with our breakthrough contribution: VulnGuard Prompt, a hybrid technique that prevents harmful information generation using real-world data-driven contrastive learning. VulnGuard integrates few-shot examples from curated GitHub repositories, ethical chain-of-thought reasoning, and adaptive role-prompting to create population-specific protective barriers. Our framework employs theoretical multi-objective optimization with formal proofs demonstrating 25-30% analytical harm reduction through entropy bounds and Pareto optimality. PromptGuard orchestrates six core modules: Input Classification, VulnGuard Prompting, Ethical Principles Integration, External Tool Interaction, Output Validation, and User-System Interaction, creating an intelligent expert system for real-time harm prevention. We provide comprehensive mathematical formalization including convergence proofs, vulnerability analysis using information theory, and theoretical validation framework using GitHub-sourced datasets, establishing mathematical foundations for systematic empirical research.
Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
Recent progress in large language models (LLMs) has leveraged their in-context learning (ICL) abilities to enable quick adaptation to unseen biomedical NLP tasks. By incorporating only a few input-output examples into prompts, LLMs can rapidly perform these new tasks. While the impact of these demonstrations on LLM performance has been extensively studied, most existing approaches prioritize representativeness over diversity when selecting examples from large corpora. To address this gap, we propose Dual-Div, a diversity-enhanced data-efficient framework for demonstration selection in biomedical ICL. Dual-Div employs a two-stage retrieval and ranking process: First, it identifies a limited set of candidate examples from a corpus by optimizing both representativeness and diversity (with optional annotation for unlabeled data). Second, it ranks these candidates against test queries to select the most relevant and non-redundant demonstrations. Evaluated on three biomedical NLP tasks (named entity recognition (NER), relation extraction (RE), and text classification (TC)) using LLaMA 3.1 and Qwen 2.5 for inference, along with three retrievers (BGE-Large, BMRetriever, MedCPT), Dual-Div consistently outperforms baselines-achieving up to 5% higher macro-F1 scores-while demonstrating robustness to prompt permutations and class imbalance. Our findings establish that diversity in initial retrieval is more critical than ranking-stage optimization, and limiting demonstrations to 3-5 examples maximizes performance efficiency.