Text classification is the process of categorizing text documents into predefined categories or labels.
The proliferation of Large Language Models (LLMs) in real-world applications poses unprecedented risks of generating harmful, biased, or misleading information to vulnerable populations including LGBTQ+ individuals, single parents, and marginalized communities. While existing safety approaches rely on post-hoc filtering or generic alignment techniques, they fail to proactively prevent harmful outputs at the generation source. This paper introduces PromptGuard, a novel modular prompting framework with our breakthrough contribution: VulnGuard Prompt, a hybrid technique that prevents harmful information generation using real-world data-driven contrastive learning. VulnGuard integrates few-shot examples from curated GitHub repositories, ethical chain-of-thought reasoning, and adaptive role-prompting to create population-specific protective barriers. Our framework employs theoretical multi-objective optimization with formal proofs demonstrating 25-30% analytical harm reduction through entropy bounds and Pareto optimality. PromptGuard orchestrates six core modules: Input Classification, VulnGuard Prompting, Ethical Principles Integration, External Tool Interaction, Output Validation, and User-System Interaction, creating an intelligent expert system for real-time harm prevention. We provide comprehensive mathematical formalization including convergence proofs, vulnerability analysis using information theory, and theoretical validation framework using GitHub-sourced datasets, establishing mathematical foundations for systematic empirical research.
Recent advances in multimodal AI have enabled progress in detecting synthetic and out-of-context content. However, existing efforts largely overlook the intent behind AI-generated images. To fill this gap, we introduce S-HArM, a multimodal dataset for intent-aware classification, comprising 9,576 "in the wild" image-text pairs from Twitter/X and Reddit, labeled as Humor/Satire, Art, or Misinformation. Additionally, we explore three prompting strategies (image-guided, description-guided, and multimodally-guided) to construct a large-scale synthetic training dataset with Stable Diffusion. We conduct an extensive comparative study including modality fusion, contrastive learning, reconstruction networks, attention mechanisms, and large vision-language models. Our results show that models trained on image- and multimodally-guided data generalize better to "in the wild" content, due to preserved visual context. However, overall performance remains limited, highlighting the complexity of inferring intent and the need for specialized architectures.




Semantic text classification requires the understanding of the contextual significance of specific tokens rather than surface-level patterns or keywords (as in rule-based or statistical text classification), making large language models (LLMs) well-suited for this task. However, semantic classification applications in industry, like customer intent detection or semantic role labeling, tend to be highly specialized. They require annotation by domain experts in contrast to general-purpose corpora for pretraining. Further, they typically require high inference throughputs which limits the model size from latency and cost perspectives. Thus, for a range of specialized classification tasks, the preferred solution is to develop customized classifiers by finetuning smaller language models (e.g., mini-encoders, small language models). In this work, we develop a token-driven sparse finetuning strategy to adapt small language models to specialized classification tasks. We identify and finetune a small sensitive subset of model parameters by leveraging task-specific token constructs in the finetuning dataset, while leaving most of the pretrained weights unchanged. Unlike adapter approaches such as low rank adaptation (LoRA), we do not introduce additional parameters to the model. Our approach identifies highly relevant semantic tokens (case study in the Appendix) and outperforms end-to-end finetuning, LoRA, layer selection, and prefix tuning on five diverse semantic classification tasks. We achieve greater stability and half the training costs vs. end-to-end finetuning.
Low-resource languages such as Sinhala are often overlooked by open-source Large Language Models (LLMs). In this research, we extend an existing multilingual LLM (Llama-3-8B) to better serve Sinhala. We enhance the LLM tokenizer with Sinhala specific vocabulary and perform continual pre-training on a cleaned 10 million Sinhala corpus, resulting in the SinLlama model. This is the very first decoder-based open-source LLM with explicit Sinhala support. When SinLlama was instruction fine-tuned for three text classification tasks, it outperformed base and instruct variants of Llama-3-8B by a significant margin.
Radiologic diagnostic errors-under-reading errors, inattentional blindness, and communication failures-remain prevalent in clinical practice. These issues often stem from missed localized abnormalities, limited global context, and variability in report language. These challenges are amplified in 3D imaging, where clinicians must examine hundreds of slices per scan. Addressing them requires systems with precise localized detection, global volume-level reasoning, and semantically consistent natural language reporting. However, existing 3D vision-language models are unable to meet all three needs jointly, lacking local-global understanding for spatial reasoning and struggling with the variability and noise of uncurated radiology reports. We present MedVista3D, a multi-scale semantic-enriched vision-language pretraining framework for 3D CT analysis. To enable joint disease detection and holistic interpretation, MedVista3D performs local and global image-text alignment for fine-grained representation learning within full-volume context. To address report variability, we apply language model rewrites and introduce a Radiology Semantic Matching Bank for semantics-aware alignment. MedVista3D achieves state-of-the-art performance on zero-shot disease classification, report retrieval, and medical visual question answering, while transferring well to organ segmentation and prognosis prediction. Code and datasets will be released.
The scarcity of well-annotated diverse medical images is a major hurdle for developing reliable AI models in healthcare. Substantial technical advances have been made in generative foundation models for natural images. Here we develop `ChexGen', a generative vision-language foundation model that introduces a unified framework for text-, mask-, and bounding box-guided synthesis of chest radiographs. Built upon the latent diffusion transformer architecture, ChexGen was pretrained on the largest curated chest X-ray dataset to date, consisting of 960,000 radiograph-report pairs. ChexGen achieves accurate synthesis of radiographs through expert evaluations and quantitative metrics. We demonstrate the utility of ChexGen for training data augmentation and supervised pretraining, which led to performance improvements across disease classification, detection, and segmentation tasks using a small fraction of training data. Further, our model enables the creation of diverse patient cohorts that enhance model fairness by detecting and mitigating demographic biases. Our study supports the transformative role of generative foundation models in building more accurate, data-efficient, and equitable medical AI systems.
Hierarchical Text Classification (HTC) aims to assign texts to structured label hierarchies; however, it faces challenges due to data scarcity and model complexity. This study explores the feasibility of using black box Large Language Models (LLMs) accessed via APIs for HTC, as an alternative to traditional machine learning methods that require extensive labeled data and computational resources. We evaluate three prompting strategies -- Direct Leaf Label Prediction (DL), Direct Hierarchical Label Prediction (DH), and Top-down Multi-step Hierarchical Label Prediction (TMH) -- in both zero-shot and few-shot settings, comparing the accuracy and cost-effectiveness of these strategies. Experiments on two datasets show that a few-shot setting consistently improves classification accuracy compared to a zero-shot setting. While a traditional machine learning model achieves high accuracy on a dataset with a shallow hierarchy, LLMs, especially DH strategy, tend to outperform the machine learning model on a dataset with a deeper hierarchy. API costs increase significantly due to the higher input tokens required for deeper label hierarchies on DH strategy. These results emphasize the trade-off between accuracy improvement and the computational cost of prompt strategy. These findings highlight the potential of black box LLMs for HTC while underscoring the need to carefully select a prompt strategy to balance performance and cost.




We introduce Drivelology, a unique linguistic phenomenon characterised as "nonsense with depth", utterances that are syntactically coherent yet pragmatically paradoxical, emotionally loaded, or rhetorically subversive. While such expressions may resemble surface-level nonsense, they encode implicit meaning requiring contextual inference, moral reasoning, or emotional interpretation. We find that current large language models (LLMs), despite excelling at many natural language processing (NLP) tasks, consistently fail to grasp the layered semantics of Drivelological text. To investigate this, we construct a small but diverse benchmark dataset of over 1,200 meticulously curated examples, with select instances in English, Mandarin, Spanish, French, Japanese, and Korean. Annotation was especially challenging: each of the examples required careful expert review to verify that it truly reflected Drivelological characteristics. The process involved multiple rounds of discussion and adjudication to address disagreements, highlighting the subtle and subjective nature of the Drivelology. We evaluate a range of LLMs on classification, generation, and reasoning tasks. Our results reveal clear limitations of LLMs: models often confuse Drivelology with shallow nonsense, produce incoherent justifications, or miss the implied rhetorical function altogether. These findings highlight a deeper representational gap in LLMs' pragmatic understanding and challenge the assumption that statistical fluency implies cognitive comprehension. We release our dataset and code to facilitate further research in modelling linguistic depth beyond surface-level coherence.
Classification is one of the most widespread tasks in AI applications, serving often as the first step in filtering, sorting, and categorizing data. Since modern AI systems must handle large volumes of input data and early pipeline stages can propagate errors downstream, achieving high efficiency and accuracy is critical. Moreover, classification requirements can change dynamically based on user needs, necessitating models with strong zero-shot capabilities. While generative LLMs have become mainstream for zero-shot classification due to their versatility, they suffer from inconsistent instruction following and computational inefficiency. Cross-encoders, commonly used as rerankers in RAG pipelines, face a different bottleneck: they must process text-label pairs sequentially, significantly reducing efficiency with large label sets. Embedding-based approaches offer good efficiency but struggle with complex scenarios involving logical and semantic constraints. We propose GLiClass, a novel method that adapts the GLiNER architecture for sequence classification tasks. Our approach achieves strong accuracy and efficiency comparable to embedding-based methods, while maintaining the flexibility needed for zero-shot and few-shot learning scenarios. Additionally, we adapted proximal policy optimization (PPO) for multi-label text classification, enabling training classifiers in data-sparse conditions or from human feedback.
With the increasing prevalence of multimodal content on social media, sentiment analysis faces significant challenges in effectively processing heterogeneous data and recognizing multi-label emotions. Existing methods often lack effective cross-modal fusion and external knowledge integration. We propose SentiMM, a novel multi-agent framework designed to systematically address these challenges. SentiMM processes text and visual inputs through specialized agents, fuses multimodal features, enriches context via knowledge retrieval, and aggregates results for final sentiment classification. We also introduce SentiMMD, a large-scale multimodal dataset with seven fine-grained sentiment categories. Extensive experiments demonstrate that SentiMM achieves superior performance compared to state-of-the-art baselines, validating the effectiveness of our structured approach.