Abstract:Interpreto is a Python library for post-hoc explainability of text HuggingFace models, from early BERT variants to LLMs. It provides two complementary families of methods: attributions and concept-based explanations. The library connects recent research to practical tooling for data scientists, aiming to make explanations accessible to end users. It includes documentation, examples, and tutorials. Interpreto supports both classification and generation models through a unified API. A key differentiator is its concept-based functionality, which goes beyond feature-level attributions and is uncommon in existing libraries. The library is open source; install via pip install interpreto. Code and documentation are available at https://github.com/FOR-sight-ai/interpreto.




Abstract:Quantum walks on binary trees are used in many quantum algorithms to achieve important speedup over classical algorithms. The formulation of this kind of algorithms as quantum circuit presents the advantage of being easily readable, executable on circuit based quantum computers and simulators and optimal on the usage of resources. We propose a strategy to compose quantum circuit that performs quantum walk on binary trees following universal gate model quantum computation principles. We give a particular attention to NAND formula evaluation algorithm as it could have many applications in game theory and reinforcement learning. We therefore propose an application of this algorithm and show how it can be used to train a quantum reinforcement learning agent in a two player game environment.