



The need to estimate the speed of road vehicles has become increasingly important in the field of video forensics, particularly with the widespread deployment of CCTV cameras worldwide. Despite the development of various approaches, the accuracy of forensic speed estimation from real-world footage remains highly dependent on several factors, including camera specifications, acquisition methods, spatial and temporal resolution, compression methods, and scene perspective, which can significantly influence performance. In this paper, we introduce ForeSpeed, a comprehensive dataset designed to support the evaluation of speed estimation techniques in real-world scenarios using CCTV footage. The dataset includes recordings of a vehicle traveling at known speeds, captured by three digital and three analog cameras from two distinct perspectives. Real-world road metrics are provided to enable the restoration of the scene geometry. Videos were stored with multiple compression factors and settings, to simulate real world scenarios in which export procedures are not always performed according to forensic standards. Overall, ForeSpeed, includes a collection of 322 videos. As a case study, we employed the ForeSpeed dataset to benchmark a speed estimation algorithm available in a commercial product (Amped FIVE). Results demonstrate that while the method reliably estimates average speed across various conditions, its uncertainty range significantly increases when the scene involves strong perspective distortion. The ForeSpeed dataset is publicly available to the forensic community, with the aim of facilitating the evaluation of current methodologies and inspiring the development of new, robust solutions tailored to collision investigation and forensic incident analysis.
The development of robust Autonomous Vehicles (AVs) is bottlenecked by the scarcity of "Long-Tail" training data. While fleets collect petabytes of video logs, identifying rare safety-critical events (e.g., erratic jaywalking, construction diversions) remains a manual, cost-prohibitive process. Existing solutions rely on coarse metadata search, which lacks precision, or cloud-based VLMs, which are privacy-invasive and expensive. We introduce Semantic-Drive, a local-first, neuro-symbolic framework for semantic data mining. Our approach decouples perception into two stages: (1) Symbolic Grounding via a real-time open-vocabulary detector (YOLOE) to anchor attention, and (2) Cognitive Analysis via a Reasoning VLM that performs forensic scene analysis. To mitigate hallucination, we implement a "System 2" inference-time alignment strategy, utilizing a multi-model "Judge-Scout" consensus mechanism. Benchmarked on the nuScenes dataset against the Waymo Open Dataset (WOD-E2E) taxonomy, Semantic-Drive achieves a Recall of 0.966 (vs. 0.475 for CLIP) and reduces Risk Assessment Error by 40% ccompared to the best single scout models. The system runs entirely on consumer hardware (NVIDIA RTX 3090), offering a privacy-preserving alternative to the cloud.
The proliferation of generative AI has led to hyper-realistic synthetic videos, escalating misuse risks and outstripping binary real/fake detectors. We introduce SAGA (Source Attribution of Generative AI videos), the first comprehensive framework to address the urgent need for AI-generated video source attribution at a large scale. Unlike traditional detection, SAGA identifies the specific generative model used. It uniquely provides multi-granular attribution across five levels: authenticity, generation task (e.g., T2V/I2V), model version, development team, and the precise generator, offering far richer forensic insights. Our novel video transformer architecture, leveraging features from a robust vision foundation model, effectively captures spatio-temporal artifacts. Critically, we introduce a data-efficient pretrain-and-attribute strategy, enabling SAGA to achieve state-of-the-art attribution using only 0.5\% of source-labeled data per class, matching fully supervised performance. Furthermore, we propose Temporal Attention Signatures (T-Sigs), a novel interpretability method that visualizes learned temporal differences, offering the first explanation for why different video generators are distinguishable. Extensive experiments on public datasets, including cross-domain scenarios, demonstrate that SAGA sets a new benchmark for synthetic video provenance, providing crucial, interpretable insights for forensic and regulatory applications.
Deepfakes generated by advanced GANs and autoencoders severely threaten information integrity and societal stability. Single-stream CNNs fail to capture multi-scale forgery artifacts across spatial, texture, and frequency domains, limiting robustness and generalization. We introduce the ForensicFlow, a tri-modal forensic framework that synergistically fuses RGB, texture, and frequency evidence for video Deepfake detection. The RGB branch (ConvNeXt-tiny) extracts global visual inconsistencies; the texture branch (Swin Transformer-tiny) detects fine-grained blending artifacts; the frequency branch (CNN + SE) identifies periodic spectral noise. Attention-based temporal pooling dynamically prioritizes high-evidence frames, while adaptive attention fusion balances branch contributions.Trained on Celeb-DF (v2) with Focal Loss, ForensicFlow achieves AUC 0.9752, F1-Score 0.9408, and accuracy 0.9208, outperforming single-stream baselines. Ablation validates branch synergy; Grad-CAM confirms forensic focus. This comprehensive feature fusion provides superior resilience against subtle forgeries.
AI-generated video has advanced rapidly and poses serious challenges to content security and forensic analysis. Existing detectors rely mainly on pixel-level visual cues and generalize poorly to unseen generators. We propose DBINDS, a diffusion-model-inversion based detector that analyzes latent-space dynamics rather than pixels. We find that initial noise sequences recovered by diffusion inversion differ systematically between real and generated videos. Building on this, DBINDS forms an Initial Noise Difference Sequence (INDS) and extracts multi-domain, multi-scale features. With feature optimization and a LightGBM classifier tuned by Bayesian search, DBINDS (trained on a single generator) achieves strong cross-generator performance on GenVidBench, demonstrating good generalization and robustness in limited-data settings.




Artificial Intelligence (AI) has made it possible for anyone to create images, audio, and video with unprecedented ease, enriching education, communication, and creative expression. At the same time, the rapid rise of AI-generated media has introduced serious risks, including misinformation, identity misuse, and the erosion of public trust as synthetic content becomes increasingly indistinguishable from real media. Although deepfake detection has advanced, many existing tools remain closed-source, limited in modality, or lacking transparency and educational value, making it difficult for users to understand how detection decisions are made. To address these gaps, we introduce SynthGuard, an open, user-friendly platform for detecting and analyzing AI-generated multimedia using both traditional detectors and multimodal large language models (MLLMs). SynthGuard provides explainable inference, unified image and audio support, and an interactive interface designed to make forensic analysis accessible to researchers, educators, and the public. The SynthGuard platform is available at: https://in-engr-nova.it.purdue.edu/
FakeHunter is a multimodal deepfake detection framework that combines memory-guided retrieval, chain-of-thought (Observation-Thought-Action) reasoning, and tool-augmented verification to provide accurate and interpretable video forensics. FakeHunter encodes visual content using CLIP and audio using CLAP, generating joint audio-visual embeddings that retrieve semantically similar real exemplars from a FAISS-indexed memory bank for contextual grounding. Guided by the retrieved context, the system iteratively reasons over evidence to localize manipulations and explain them. When confidence is low, it automatically invokes specialized tools-such as zoom-in image forensics or mel-spectrogram inspection-for fine-grained verification. Built on Qwen2.5-Omni-7B, FakeHunter produces structured JSON verdicts that specify what was modified, where it occurs, and why it is judged fake. We also introduce X-AVFake, a benchmark comprising 5.7k+ manipulated and real videos (950+ min) annotated with manipulation type, region/entity, violated reasoning category, and free-form justification. On X-AVFake, FakeHunter achieves an accuracy of 34.75%, outperforming the vanilla Qwen2.5-Omni-7B by 16.87 percentage points and MiniCPM-2.6 by 25.56 percentage points. Ablation studies reveal that memory retrieval contributes a 7.75 percentage point gain, and tool-based inspection improves low-confidence cases to 46.50%. Despite its multi-stage design, the pipeline processes a 10-minute clip in 8 minutes on a single NVIDIA A800 (0.8x real-time) or 2 minutes on four GPUs (0.2x), demonstrating practical deployability.
The rapid advancement of AI technologies has significantly increased the diversity of DeepFake videos circulating online, posing a pressing challenge for \textit{generalizable forensics}, \ie, detecting a wide range of unseen DeepFake types using a single model. Addressing this challenge requires datasets that are not only large-scale but also rich in forgery diversity. However, most existing datasets, despite their scale, include only a limited variety of forgery types, making them insufficient for developing generalizable detection methods. Therefore, we build upon our earlier Celeb-DF dataset and introduce {Celeb-DF++}, a new large-scale and challenging video DeepFake benchmark dedicated to the generalizable forensics challenge. Celeb-DF++ covers three commonly encountered forgery scenarios: Face-swap (FS), Face-reenactment (FR), and Talking-face (TF). Each scenario contains a substantial number of high-quality forged videos, generated using a total of 22 various recent DeepFake methods. These methods differ in terms of architectures, generation pipelines, and targeted facial regions, covering the most prevalent DeepFake cases witnessed in the wild. We also introduce evaluation protocols for measuring the generalizability of 24 recent detection methods, highlighting the limitations of existing detection methods and the difficulty of our new dataset.
The rapid advancement of generative models has led to a growing prevalence of highly realistic AI-generated images, posing significant challenges for digital forensics and content authentication. Conventional detection methods mainly rely on deep learning models that extract global features, which often overlook subtle structural inconsistencies and demand substantial computational resources. To address these limitations, we propose a hybrid detection framework that combines a fine-tuned Vision Transformer (ViT) with a novel edge-based image processing module. The edge-based module computes variance from edge-difference maps generated before and after smoothing, exploiting the observation that AI-generated images typically exhibit smoother textures, weaker edges, and reduced noise compared to real images. When applied as a post-processing step on ViT predictions, this module enhances sensitivity to fine-grained structural cues while maintaining computational efficiency. Extensive experiments on the CIFAKE, Artistic, and Custom Curated datasets demonstrate that the proposed framework achieves superior detection performance across all benchmarks, attaining 97.75% accuracy and a 97.77% F1-score on CIFAKE, surpassing widely adopted state-of-the-art models. These results establish the proposed method as a lightweight, interpretable, and effective solution for both still images and video frames, making it highly suitable for real-world applications in automated content verification and digital forensics.




Detection of face forgery videos remains a formidable challenge in the field of digital forensics, especially the generalization to unseen datasets and common perturbations. In this paper, we tackle this issue by leveraging the synergy between audio and visual speech elements, embarking on a novel approach through audio-visual speech representation learning. Our work is motivated by the finding that audio signals, enriched with speech content, can provide precise information effectively reflecting facial movements. To this end, we first learn precise audio-visual speech representations on real videos via a self-supervised masked prediction task, which encodes both local and global semantic information simultaneously. Then, the derived model is directly transferred to the forgery detection task. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of cross-dataset generalization and robustness, without the participation of any fake video in model training. Code is available at https://github.com/Eleven4AI/SpeechForensics.