Abstract:The rapid advancement of generative models has led to a growing prevalence of highly realistic AI-generated images, posing significant challenges for digital forensics and content authentication. Conventional detection methods mainly rely on deep learning models that extract global features, which often overlook subtle structural inconsistencies and demand substantial computational resources. To address these limitations, we propose a hybrid detection framework that combines a fine-tuned Vision Transformer (ViT) with a novel edge-based image processing module. The edge-based module computes variance from edge-difference maps generated before and after smoothing, exploiting the observation that AI-generated images typically exhibit smoother textures, weaker edges, and reduced noise compared to real images. When applied as a post-processing step on ViT predictions, this module enhances sensitivity to fine-grained structural cues while maintaining computational efficiency. Extensive experiments on the CIFAKE, Artistic, and Custom Curated datasets demonstrate that the proposed framework achieves superior detection performance across all benchmarks, attaining 97.75% accuracy and a 97.77% F1-score on CIFAKE, surpassing widely adopted state-of-the-art models. These results establish the proposed method as a lightweight, interpretable, and effective solution for both still images and video frames, making it highly suitable for real-world applications in automated content verification and digital forensics.
Abstract:Estimating depth from a single 2D image is a challenging task because of the need for stereo or multi-view data, which normally provides depth information. This paper deals with this challenge by introducing a novel deep learning-based approach using an encoder-decoder architecture, where the Inception-ResNet-v2 model is utilized as the encoder. According to the available literature, this is the first instance of using Inception-ResNet-v2 as an encoder for monocular depth estimation, illustrating better performance than previous models. The use of Inception-ResNet-v2 enables our model to capture complex objects and fine-grained details effectively that are generally difficult to predict. Besides, our model incorporates multi-scale feature extraction to enhance depth prediction accuracy across different kinds of object sizes and distances. We propose a composite loss function consisting of depth loss, gradient edge loss, and SSIM loss, where the weights are fine-tuned to optimize the weighted sum, ensuring better balance across different aspects of depth estimation. Experimental results on the NYU Depth V2 dataset show that our model achieves state-of-the-art performance, with an ARE of 0.064, RMSE of 0.228, and accuracy ($\delta$ $<1.25$) of 89.3%. These metrics demonstrate that our model effectively predicts depth, even in challenging circumstances, providing a scalable solution for real-world applications in robotics, 3D reconstruction, and augmented reality.