Unsupervised anomaly detection is the process of identifying unusual patterns or outliers in data without using labeled examples.
Traditional deep learning models often lack annotated data, especially in cross-domain applications such as anomaly detection, which is critical for early disease diagnosis in medicine and defect detection in industry. To address this challenge, we propose Multi-AD, a convolutional neural network (CNN) model for robust unsupervised anomaly detection across medical and industrial images. Our approach employs the squeeze-and-excitation (SE) block to enhance feature extraction via channel-wise attention, enabling the model to focus on the most relevant features and detect subtle anomalies. Knowledge distillation (KD) transfers informative features from the teacher to the student model, enabling effective learning of the differences between normal and anomalous data. Then, the discriminator network further enhances the model's capacity to distinguish between normal and anomalous data. At the inference stage, by integrating multi-scale features, the student model can detect anomalies of varying sizes. The teacher-student (T-S) architecture ensures consistent representation of high-dimensional features while adapting them to enhance anomaly detection. Multi-AD was evaluated on several medical datasets, including brain MRI, liver CT, and retina OCT, as well as industrial datasets, such as MVTec AD, demonstrating strong generalization across multiple domains. Experimental results demonstrated that our approach consistently outperformed state-of-the-art models, achieving the best average AUROC for both image-level (81.4% for medical and 99.6% for industrial) and pixel-level (97.0% for medical and 98.4% for industrial) tasks, making it effective for real-world applications.
Unsupervised anomaly detection stands as an important problem in machine learning, with applications in financial fraud prevention, network security and medical diagnostics. Existing unsupervised anomaly detection algorithms rarely perform well across different anomaly types, often excelling only under specific structural assumptions. This lack of robustness also becomes particularly evident under noisy settings. We propose Mean Shift Density Enhancement (MSDE), a fully unsupervised framework that detects anomalies through their geometric response to density-driven manifold evolution. MSDE is based on the principle that normal samples, being well supported by local density, remain stable under iterative density enhancement, whereas anomalous samples undergo large cumulative displacements as they are attracted toward nearby density modes. To operationalize this idea, MSDE employs a weighted mean-shift procedure with adaptive, sample-specific density weights derived from a UMAP-based fuzzy neighborhood graph. Anomaly scores are defined by the total displacement accumulated across a small number of mean-shift iterations. We evaluate MSDE on the ADBench benchmark, comprising forty six real-world tabular datasets, four realistic anomaly generation mechanisms, and six noise levels. Compared to 13 established unsupervised baselines, MSDE achieves consistently strong, balanced and robust performance for AUC-ROC, AUC-PR, and Precision@n, at several noise levels and on average over several types of anomalies. These results demonstrate that displacement-based scoring provides a robust alternative to the existing state-of-the-art for unsupervised anomaly detection.
Industrial Anomaly Detection (IAD) is vital for manufacturing, yet traditional methods face significant challenges: unsupervised approaches yield rough localizations requiring manual thresholds, while supervised methods overfit due to scarce, imbalanced data. Both suffer from the "One Anomaly Class, One Model" limitation. To address this, we propose Referring Industrial Anomaly Segmentation (RIAS), a paradigm leveraging language to guide detection. RIAS generates precise masks from text descriptions without manual thresholds and uses universal prompts to detect diverse anomalies with a single model. We introduce the MVTec-Ref dataset to support this, designed with diverse referring expressions and focusing on anomaly patterns, notably with 95% small anomalies. We also propose the Dual Query Token with Mask Group Transformer (DQFormer) benchmark, enhanced by Language-Gated Multi-Level Aggregation (LMA) to improve multi-scale segmentation. Unlike traditional methods using redundant queries, DQFormer employs only "Anomaly" and "Background" tokens for efficient visual-textual integration. Experiments demonstrate RIAS's effectiveness in advancing IAD toward open-set capabilities. Code: https://github.com/swagger-coder/RIAS-MVTec-Ref.
Advanced Persistent Threats (APTs) are sophisticated, long-term cyberattacks that are difficult to detect because they operate stealthily and often blend into normal system behavior. This paper presents a neuro-symbolic anomaly detection framework that combines a Graph Autoencoder (GAE) with rare pattern mining to identify APT-like activities in system-level provenance data. Our approach first constructs a process behavioral graph using k-Nearest Neighbors based on feature similarity, then learns normal relational structure using a Graph Autoencoder. Anomaly candidates are identified through deviations between observed and reconstructed graph structure. To further improve detection, we integrate an rare pattern mining module that discovers infrequent behavioral co-occurrences and uses them to boost anomaly scores for processes exhibiting rare signatures. We evaluate the proposed method on the DARPA Transparent Computing datasets and show that rare-pattern boosting yields substantial gains in anomaly ranking quality over the baseline GAE. Compared with existing unsupervised approaches on the same benchmark, our single unified model consistently outperforms individual context-based detectors and achieves performance competitive with ensemble aggregation methods that require multiple separate detectors. These results highlight the value of coupling graph-based representation learning with classical pattern mining to improve both effectiveness and interpretability in provenance-based security anomaly detection.
Unsupervised anomaly detection (AD) in medical images aims to identify abnormal regions without relying on pixel-level annotations, which is crucial for scalable and label-efficient diagnostic systems. In this paper, we propose a novel anomaly detection framework based on DINO-V3 representations, termed DINO-AD, which leverages self-supervised visual features for precise and interpretable anomaly localization. Specifically, we introduce an embedding similarity matching strategy to select a semantically aligned support image and a foreground-aware K-means clustering module to model the distribution of normal features. Anomaly maps are then computed by comparing the query features with clustered normal embeddings through cosine similarity. Experimental results on both the Brain and Liver datasets demonstrate that our method achieves superior quantitative performance compared with state-of-the-art approaches, achieving AUROC scores of up to 98.71. Qualitative results further confirm that our framework produces clearer and more accurate anomaly localization. Extensive ablation studies validate the effectiveness of each proposed component, highlighting the robustness and generalizability of our approach.
We investigate how the topology of attributed graphs influences the distribution of node attributes. This work offers a novel perspective by treating topology and attributes as structurally distinct but interacting components. We introduce an algebraic approach that combines a graph's topology with the probability distribution of node attributes, resulting in topology-influenced distributions. First, we develop a categorical framework to formalize how a node perceives the graph's topology. We then quantify this point of view and integrate it with the distribution of node attributes to capture topological effects. We interpret these topology-conditioned distributions as approximations of the posteriors $P(\cdot \mid v)$ and $P(\cdot \mid \mathcal{G})$. We further establish a principled sufficiency condition by showing that, on complete graphs, where topology carries no informative structure, our construction recovers the original attribute distribution. To evaluate our approach, we introduce an intentionally simple testbed model, $\textbf{ID}$, and use unsupervised graph anomaly detection as a probing task.
Unsupervised anomaly detection is a challenging problem due to the diversity of data distributions and the lack of labels. Ensemble methods are often adopted to mitigate these challenges by combining multiple detectors, which can reduce individual biases and increase robustness. Yet building an ensemble that is genuinely complementary remains challenging, since many detectors rely on similar decision cues and end up producing redundant anomaly scores. As a result, the potential of ensemble learning is often limited by the difficulty of identifying models that truly capture different types of irregularities. To address this, we propose a methodology for characterizing anomaly detectors through their decision mechanisms. Using SHapley Additive exPlanations, we quantify how each model attributes importance to input features, and we use these attribution profiles to measure similarity between detectors. We show that detectors with similar explanations tend to produce correlated anomaly scores and identify largely overlapping anomalies. Conversely, explanation divergence reliably indicates complementary detection behavior. Our results demonstrate that explanation-driven metrics offer a different criterion than raw outputs for selecting models in an ensemble. However, we also demonstrate that diversity alone is insufficient; high individual model performance remains a prerequisite for effective ensembles. By explicitly targeting explanation diversity while maintaining model quality, we are able to construct ensembles that are more diverse, more complementary, and ultimately more effective for unsupervised anomaly detection.
Current state-of-the-art multi-class unsupervised anomaly detection (MUAD) methods rely on training encoder-decoder models to reconstruct anomaly-free features. We first show these approaches have an inherent fidelity-stability dilemma in how they detect anomalies via reconstruction residuals. We then abandon the reconstruction paradigm entirely and propose Retrieval-based Anomaly Detection (RAD). RAD is a training-free approach that stores anomaly-free features in a memory and detects anomalies through multi-level retrieval, matching test patches against the memory. Experiments demonstrate that RAD achieves state-of-the-art performance across four established benchmarks (MVTec-AD, VisA, Real-IAD, 3D-ADAM) under both standard and few-shot settings. On MVTec-AD, RAD reaches 96.7\% Pixel AUROC with just a single anomaly-free image compared to 98.5\% of RAD's full-data performance. We further prove that retrieval-based scores theoretically upper-bound reconstruction-residual scores. Collectively, these findings overturn the assumption that MUAD requires task-specific training, showing that state-of-the-art anomaly detection is feasible with memory-based retrieval. Our code is available at https://github.com/longkukuhi/RAD.
Visual anomaly detection in multi-class settings poses significant challenges due to the diversity of object categories, the scarcity of anomalous examples, and the presence of camouflaged defects. In this paper, we propose PromptMAD, a cross-modal prompting framework for unsupervised visual anomaly detection and localization that integrates semantic guidance through vision-language alignment. By leveraging CLIP-encoded text prompts describing both normal and anomalous class-specific characteristics, our method enriches visual reconstruction with semantic context, improving the detection of subtle and textural anomalies. To further address the challenge of class imbalance at the pixel level, we incorporate Focal loss function, which emphasizes hard-to-detect anomalous regions during training. Our architecture also includes a supervised segmentor that fuses multi-scale convolutional features with Transformer-based spatial attention and diffusion iterative refinement, yielding precise and high-resolution anomaly maps. Extensive experiments on the MVTec-AD dataset demonstrate that our method achieves state-of-the-art pixel-level performance, improving mean AUC to 98.35% and AP to 66.54%, while maintaining efficiency across diverse categories.
Identifying safety-critical scenarios is essential for autonomous driving, but the rarity of such events makes supervised labeling impractical. Traditional rule-based metrics like Time-to-Collision are too simplistic to capture complex interaction risks, and existing methods lack a systematic way to verify whether statistical anomalies truly reflect physical danger. To address this gap, we propose an unsupervised anomaly detection framework based on a multi-agent Transformer that models normal driving and measures deviations through prediction residuals. A dual evaluation scheme has been proposed to assess both detection stability and physical alignment: Stability is measured using standard ranking metrics in which Kendall Rank Correlation Coefficient captures rank agreement and Jaccard index captures the consistency of the top-K selected items; Physical alignment is assessed through correlations with established Surrogate Safety Measures (SSM). Experiments on the NGSIM dataset demonstrate our framework's effectiveness: We show that the maximum residual aggregator achieves the highest physical alignment while maintaining stability. Furthermore, our framework identifies 388 unique anomalies missed by Time-to-Collision and statistical baselines, capturing subtle multi-agent risks like reactive braking under lateral drift. The detected anomalies are further clustered into four interpretable risk types, offering actionable insights for simulation and testing.