Unsupervised Anomaly Detection


Unsupervised anomaly detection is the process of identifying unusual patterns or outliers in data without using labeled examples.

Multi-AD: Cross-Domain Unsupervised Anomaly Detection for Medical and Industrial Applications

Add code
Feb 05, 2026
Viaarxiv icon

Anomaly Detection via Mean Shift Density Enhancement

Add code
Feb 03, 2026
Viaarxiv icon

Referring Industrial Anomaly Segmentation

Add code
Feb 03, 2026
Viaarxiv icon

RPG-AE: Neuro-Symbolic Graph Autoencoders with Rare Pattern Mining for Provenance-Based Anomaly Detection

Add code
Feb 03, 2026
Viaarxiv icon

DINO-AD: Unsupervised Anomaly Detection with Frozen DINO-V3 Features

Add code
Jan 31, 2026
Viaarxiv icon

Modeling Topological Impact on Node Attribute Distributions in Attributed Graphs

Add code
Feb 01, 2026
Viaarxiv icon

Analyzing Shapley Additive Explanations to Understand Anomaly Detection Algorithm Behaviors and Their Complementarity

Add code
Jan 30, 2026
Viaarxiv icon

Is Training Necessary for Anomaly Detection?

Add code
Jan 30, 2026
Viaarxiv icon

PromptMAD: Cross-Modal Prompting for Multi-Class Visual Anomaly Localization

Add code
Jan 30, 2026
Viaarxiv icon

Unsupervised Anomaly Detection in Multi-Agent Trajectory Prediction via Transformer-Based Models

Add code
Jan 28, 2026
Viaarxiv icon