Unsupervised Anomaly Detection


Unsupervised anomaly detection is the process of identifying unusual patterns or outliers in data without using labeled examples.

Synthetic Image Detection via Spectral Gaps of QC-RBIM Nishimori Bethe-Hessian Operators

Add code
Aug 27, 2025
Viaarxiv icon

Fence off Anomaly Interference: Cross-Domain Distillation for Fully Unsupervised Anomaly Detection

Add code
Aug 25, 2025
Viaarxiv icon

No Label Left Behind: A Unified Surface Defect Detection Model for all Supervision Regimes

Add code
Aug 26, 2025
Viaarxiv icon

Pathology-Informed Latent Diffusion Model for Anomaly Detection in Lymph Node Metastasis

Add code
Aug 21, 2025
Viaarxiv icon

Adaptive Anomaly Detection in Evolving Network Environments

Add code
Aug 20, 2025
Viaarxiv icon

Levarging Learning Bias for Noisy Anomaly Detection

Add code
Aug 10, 2025
Viaarxiv icon

How and Why: Taming Flow Matching for Unsupervised Anomaly Detection and Localization

Add code
Aug 07, 2025
Viaarxiv icon

Multi-Stage Knowledge-Distilled VGAE and GAT for Robust Controller-Area-Network Intrusion Detection

Add code
Aug 06, 2025
Viaarxiv icon

Single-Step Reconstruction-Free Anomaly Detection and Segmentation via Diffusion Models

Add code
Aug 06, 2025
Viaarxiv icon

TriP-LLM: A Tri-Branch Patch-wise Large Language Model Framework for Time-Series Anomaly Detection

Add code
Jul 31, 2025
Viaarxiv icon