Unsupervised Anomaly Detection


Unsupervised anomaly detection is the process of identifying unusual patterns or outliers in data without using labeled examples.

Unsupervised Deep Generative Models for Anomaly Detection in Neuroimaging: A Systematic Scoping Review

Add code
Oct 16, 2025
Viaarxiv icon

Metacognitive Self-Correction for Multi-Agent System via Prototype-Guided Next-Execution Reconstruction

Add code
Oct 16, 2025
Viaarxiv icon

On Uniformly Scaling Flows: A Density-Aligned Approach to Deep One-Class Classification

Add code
Oct 10, 2025
Viaarxiv icon

Robust Spatiotemporally Contiguous Anomaly Detection Using Tensor Decomposition

Add code
Oct 01, 2025
Viaarxiv icon

Moon: A Modality Conversion-based Efficient Multivariate Time Series Anomaly Detection

Add code
Oct 02, 2025
Viaarxiv icon

Contrastive Learning with Spectrum Information Augmentation in Abnormal Sound Detection

Add code
Sep 19, 2025
Viaarxiv icon

MicroRCA-Agent: Microservice Root Cause Analysis Method Based on Large Language Model Agents

Add code
Sep 19, 2025
Viaarxiv icon

Explainable Unsupervised Multi-Anomaly Detection and Temporal Localization in Nuclear Times Series Data with a Dual Attention-Based Autoencoder

Add code
Sep 15, 2025
Viaarxiv icon

AREPAS: Anomaly Detection in Fine-Grained Anatomy with Reconstruction-Based Semantic Patch-Scoring

Add code
Sep 16, 2025
Viaarxiv icon

Deep Context-Conditioned Anomaly Detection for Tabular Data

Add code
Sep 10, 2025
Viaarxiv icon