Unsupervised Anomaly Detection


Unsupervised anomaly detection is the process of identifying unusual patterns or outliers in data without using labeled examples.

Explainable Unsupervised Anomaly Detection with Random Forest

Add code
Apr 22, 2025
Viaarxiv icon

Memory-Augmented Dual-Decoder Networks for Multi-Class Unsupervised Anomaly Detection

Add code
Apr 21, 2025
Viaarxiv icon

Unsupervised Time-Series Signal Analysis with Autoencoders and Vision Transformers: A Review of Architectures and Applications

Add code
Apr 23, 2025
Viaarxiv icon

M$^2$AD: Multi-Sensor Multi-System Anomaly Detection through Global Scoring and Calibrated Thresholding

Add code
Apr 21, 2025
Viaarxiv icon

Quorum: Zero-Training Unsupervised Anomaly Detection using Quantum Autoencoders

Add code
Apr 17, 2025
Viaarxiv icon

HSS-IAD: A Heterogeneous Same-Sort Industrial Anomaly Detection Dataset

Add code
Apr 17, 2025
Viaarxiv icon

ACMamba: Fast Unsupervised Anomaly Detection via An Asymmetrical Consensus State Space Model

Add code
Apr 16, 2025
Viaarxiv icon

Sliced-Wasserstein Distance-based Data Selection

Add code
Apr 17, 2025
Viaarxiv icon

DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection

Add code
Apr 19, 2025
Viaarxiv icon

Strengthening Anomaly Awareness

Add code
Apr 15, 2025
Viaarxiv icon