Abstract:The nuclear industry is advancing toward more new reactor designs, with next-generation reactors expected to be smaller in scale and power output. These systems have the potential to produce large volumes of information in the form of multivariate time-series data, which could be used for enhanced real-time monitoring and control. In this context, the development of remote autonomous or semi-autonomous control systems for reactor operation has gained significant interest. A critical first step toward such systems is an accurate diagnostics module capable of detecting and localizing anomalies within the reactor system. Recent studies have proposed various ML and DL approaches for anomaly detection in the nuclear domain. Despite promising results, key challenges remain, including limited to no explainability, lack of access to real-world data, and scarcity of abnormal events, which impedes benchmarking and characterization. Most existing studies treat these methods as black boxes, while recent work highlights the need for greater interpretability of ML/DL outputs in safety-critical domains. Here, we propose an unsupervised methodology based on an LSTM autoencoder with a dual attention mechanism for characterization of abnormal events in a real-world reactor radiation area monitoring system. The framework includes not only detection but also localization of the event and was evaluated using real-world datasets of increasing complexity from the PUR-1 research reactor. The attention mechanisms operate in both the feature and temporal dimensions, where the feature attention assigns weights to radiation sensors exhibiting abnormal patterns, while time attention highlights the specific timesteps where irregularities occur, thus enabling localization. By combining the results, the framework can identify both the affected sensors and the duration of each anomaly within a single unified network.
Abstract:Nondestructive evaluation methods play an important role in ensuring component integrity and safety in many industries. Operator fatigue can play a critical role in the reliability of such methods. This is important for inspecting high value assets or assets with a high consequence of failure, such as aerospace and nuclear components. Recent advances in convolution neural networks can support and automate these inspection efforts. This paper proposes using residual neural networks (ResNets) for real-time detection of pitting and stress corrosion cracking, with a focus on dry storage canisters housing used nuclear fuel. The proposed approach crops nuclear canister images into smaller tiles, trains a ResNet on these tiles, and classifies images as corroded or intact using the per-image count of tiles predicted as corroded by the ResNet. The results demonstrate that such a deep learning approach allows to detect the locus of corrosion cracks via smaller tiles, and at the same time to infer with high accuracy whether an image comes from a corroded canister. Thereby, the proposed approach holds promise to automate and speed up nuclear fuel canister inspections, to minimize inspection costs, and to partially replace human-conducted onsite inspections, thus reducing radiation doses to personnel.