Abstract:The nuclear industry is advancing toward more new reactor designs, with next-generation reactors expected to be smaller in scale and power output. These systems have the potential to produce large volumes of information in the form of multivariate time-series data, which could be used for enhanced real-time monitoring and control. In this context, the development of remote autonomous or semi-autonomous control systems for reactor operation has gained significant interest. A critical first step toward such systems is an accurate diagnostics module capable of detecting and localizing anomalies within the reactor system. Recent studies have proposed various ML and DL approaches for anomaly detection in the nuclear domain. Despite promising results, key challenges remain, including limited to no explainability, lack of access to real-world data, and scarcity of abnormal events, which impedes benchmarking and characterization. Most existing studies treat these methods as black boxes, while recent work highlights the need for greater interpretability of ML/DL outputs in safety-critical domains. Here, we propose an unsupervised methodology based on an LSTM autoencoder with a dual attention mechanism for characterization of abnormal events in a real-world reactor radiation area monitoring system. The framework includes not only detection but also localization of the event and was evaluated using real-world datasets of increasing complexity from the PUR-1 research reactor. The attention mechanisms operate in both the feature and temporal dimensions, where the feature attention assigns weights to radiation sensors exhibiting abnormal patterns, while time attention highlights the specific timesteps where irregularities occur, thus enabling localization. By combining the results, the framework can identify both the affected sensors and the duration of each anomaly within a single unified network.