Abstract:Anomaly detection is critical in domains such as cybersecurity and finance, especially when working with large-scale tabular data. Yet, unsupervised anomaly detection -- where no labeled anomalies are available -- remains a significant challenge. Although various deep learning methods have been proposed to model a dataset's joint distribution, real-world tabular data often contain heterogeneous contexts (e.g., different users), making globally rare events normal under certain contexts. Consequently, relying on a single global distribution can overlook these contextual nuances, degrading detection performance. In this paper, we present a context-conditional anomaly detection framework tailored for tabular datasets. Our approach automatically identifies context features and models the conditional data distribution using a simple deep autoencoder. Extensive experiments on multiple tabular benchmark datasets demonstrate that our method outperforms state-of-the-art approaches, underscoring the importance of context in accurately distinguishing anomalous from normal instances.
Abstract:Next Basket Recommendation (NBR) is a new type of recommender system that predicts combinations of items users are likely to purchase together. Existing NBR models often overlook a crucial factor, which is price, and do not fully capture item-basket-user interactions. To address these limitations, we propose a novel method called Basket-augmented Dynamic Heterogeneous Hypergraph (BDHH). BDHH utilizes a heterogeneous multi-relational graph to capture the intricate relationships among item features, with price as a critical factor. Moreover, our approach includes a basket-guided dynamic augmentation network that could dynamically enhances item-basket-user interactions. Experiments on real-world datasets demonstrate that BDHH significantly improves recommendation accuracy, providing a more comprehensive understanding of user behavior.