Tonogenesis-the historical process by which segmental contrasts evolve into lexical tone-has traditionally been studied through comparative reconstruction and acoustic phonetics. We introduce a computational approach that quantifies the functional role of pitch at different stages of this sound change by measuring how pitch manipulation affects automatic speech recognition (ASR) performance. Through analysis on the sensitivity to pitch-flattening from a set of closely related Tibetan languages, we find evidence of a tonogenesis continuum: atonal Amdo dialects tolerate pitch removal the most, while fully tonal U-Tsang varieties show severe degradation, and intermediate Kham dialects fall measurably between these extremes. These gradient effects demonstrate how ASR models implicitly learn the shifting functional load of pitch as languages transition from consonant-based to tone-based lexical contrasts. Our findings show that computational methods can capture fine-grained stages of sound change and suggest that traditional functional load metrics, based solely on minimal pairs, may overestimate pitch dependence in transitional systems where segmental and suprasegmental cues remain phonetically intertwined.
Simulations constitute a fundamental component of medical and nursing education and traditionally employ standardized patients (SP) and high-fidelity manikins to develop clinical reasoning and communication skills. However, these methods require substantial resources, limiting accessibility and scalability. In this study, we introduce CLiVR, a Conversational Learning system in Virtual Reality that integrates large language models (LLMs), speech processing, and 3D avatars to simulate realistic doctor-patient interactions. Developed in Unity and deployed on the Meta Quest 3 platform, CLiVR enables trainees to engage in natural dialogue with virtual patients. Each simulation is dynamically generated from a syndrome-symptom database and enhanced with sentiment analysis to provide feedback on communication tone. Through an expert user study involving medical school faculty (n=13), we assessed usability, realism, and perceived educational impact. Results demonstrated strong user acceptance, high confidence in educational potential, and valuable feedback for improvement. CLiVR offers a scalable, immersive supplement to SP-based training.
We present Re:Member, a system that explores how emotionally expressive, memory-grounded interaction can support more engaging second language (L2) learning. By drawing on users' personal videos and generating stylized spoken questions in the target language, Re:Member is designed to encourage affective recall and conversational engagement. The system aligns emotional tone with visual context, using expressive speech styles such as whispers or late-night tones to evoke specific moods. It combines WhisperX-based transcript alignment, 3-frame visual sampling, and Style-BERT-VITS2 for emotional synthesis within a modular generation pipeline. Designed as a stylized interaction probe, Re:Member highlights the role of affect and personal media in learner-centered educational technologies.
In reinforcement learning from human feedback, preference-based reward models play a central role in aligning large language models to human-aligned behavior. However, recent studies show that these models are prone to reward hacking and often fail to generalize well due to over-optimization. They achieve high reward scores by exploiting shortcuts, that is, exploiting spurious features (e.g., response verbosity, agreeable tone, or sycophancy) that correlate with human preference labels in the training data rather than genuinely reflecting the intended objectives. In this paper, instead of probing these issues one at a time, we take a broader view of the reward hacking problem as shortcut behaviors and introduce a principled yet flexible approach to mitigate shortcut behaviors in preference-based reward learning. Inspired by the invariant theory in the kernel perspective, we propose Preference-based Reward Invariance for Shortcut Mitigation (PRISM), which learns group-invariant kernels with feature maps in a closed-form learning objective. Experimental results in several benchmarks show that our method consistently improves the accuracy of the reward model on diverse out-of-distribution tasks and reduces the dependency on shortcuts in downstream policy models, establishing a robust framework for preference-based alignment.




Large Language Models (LLMs) are highly sensitive to prompt design, and making optimized prompting techniques is crucial for generating consistent, high-quality outputs. In this study, we introduce COSTAR-A, a novel prompt engineering framework that enhances the existing COSTAR method, which stands for Context, Objective, Style, Tone, Audience, and Response, by adding the 'Answer' component at the end. We demonstrate that while the original COSTAR framework improves prompt clarity and aligns outputs for larger LLMs, its performance is less consistent with smaller, locally optimized models, particularly in tasks that require more directive or constrained outputs. Through a series of controlled prompt-output assessments with smaller (at most 8 billion parameters), fine-tuned models, we found that COSTAR-A can enhance the output structure and decisiveness of localized LLMs for certain tasks, although its effectiveness varies across models and use cases. Notably, the Llama 3.1-8B model exhibited performance improvements when prompted with COSTAR-A compared to COSTAR alone. These findings emphasize the adaptability and scalability of COSTAR-A as a prompting framework, particularly in computationally efficient AI deployments on resource-constrained hardware.
As the volume of peer-reviewed research surges, scholars increasingly rely on social platforms for discovery, while authors invest considerable effort in promoting their work to ensure visibility and citations. To streamline this process and reduce the reliance on human effort, we introduce Automatic Promotion (AutoPR), a novel task that transforms research papers into accurate, engaging, and timely public content. To enable rigorous evaluation, we release PRBench, a multimodal benchmark that links 512 peer-reviewed articles to high-quality promotional posts, assessing systems along three axes: Fidelity (accuracy and tone), Engagement (audience targeting and appeal), and Alignment (timing and channel optimization). We also introduce PRAgent, a multi-agent framework that automates AutoPR in three stages: content extraction with multimodal preparation, collaborative synthesis for polished outputs, and platform-specific adaptation to optimize norms, tone, and tagging for maximum reach. When compared to direct LLM pipelines on PRBench, PRAgent demonstrates substantial improvements, including a 604% increase in total watch time, a 438% rise in likes, and at least a 2.9x boost in overall engagement. Ablation studies show that platform modeling and targeted promotion contribute the most to these gains. Our results position AutoPR as a tractable, measurable research problem and provide a roadmap for scalable, impactful automated scholarly communication.
In Music Information Retrieval (MIR), modeling and transforming the tone of musical instruments, particularly electric guitars, has gained increasing attention due to the richness of the instrument tone and the flexibility of expression. Tone morphing enables smooth transitions between different guitar sounds, giving musicians greater freedom to explore new textures and personalize their performances. This study explores learning-based approaches for guitar tone morphing, beginning with LoRA fine-tuning to improve the model performance on limited data. Moreover, we introduce a simpler method, named spherical interpolation using Music2Latent. It yields significantly better results than the more complex fine-tuning approach. Experiments show that the proposed architecture generates smoother and more natural tone transitions, making it a practical and efficient tool for music production and real-time audio effects.



The wording of natural language prompts has been shown to influence the performance of large language models (LLMs), yet the role of politeness and tone remains underexplored. In this study, we investigate how varying levels of prompt politeness affect model accuracy on multiple-choice questions. We created a dataset of 50 base questions spanning mathematics, science, and history, each rewritten into five tone variants: Very Polite, Polite, Neutral, Rude, and Very Rude, yielding 250 unique prompts. Using ChatGPT 4o, we evaluated responses across these conditions and applied paired sample t-tests to assess statistical significance. Contrary to expectations, impolite prompts consistently outperformed polite ones, with accuracy ranging from 80.8% for Very Polite prompts to 84.8% for Very Rude prompts. These findings differ from earlier studies that associated rudeness with poorer outcomes, suggesting that newer LLMs may respond differently to tonal variation. Our results highlight the importance of studying pragmatic aspects of prompting and raise broader questions about the social dimensions of human-AI interaction.
Asynchronous patient-clinician messaging via EHR portals is a growing source of clinician workload, prompting interest in large language models (LLMs) to assist with draft responses. However, LLM outputs may contain clinical inaccuracies, omissions, or tone mismatches, making robust evaluation essential. Our contributions are threefold: (1) we introduce a clinically grounded error ontology comprising 5 domains and 59 granular error codes, developed through inductive coding and expert adjudication; (2) we develop a retrieval-augmented evaluation pipeline (RAEC) that leverages semantically similar historical message-response pairs to improve judgment quality; and (3) we provide a two-stage prompting architecture using DSPy to enable scalable, interpretable, and hierarchical error detection. Our approach assesses the quality of drafts both in isolation and with reference to similar past message-response pairs retrieved from institutional archives. Using a two-stage DSPy pipeline, we compared baseline and reference-enhanced evaluations on over 1,500 patient messages. Retrieval context improved error identification in domains such as clinical completeness and workflow appropriateness. Human validation on 100 messages demonstrated superior agreement (concordance = 50% vs. 33%) and performance (F1 = 0.500 vs. 0.256) of context-enhanced labels vs. baseline, supporting the use of our RAEC pipeline as AI guardrails for patient messaging.
Leveraging the multilayer realization of programmable metasurfaces, stacked intelligent metasurfaces (SIM) enable fine-grained wave-domain control. However, their wideband deployment is impeded by two structural factors: (i) a single, quasi-static SIM phase tensor must adapt to all subcarriers, and (ii) multiuser scheduling changes the subcarrier activation pattern frame by frame, requiring rapid reconfiguration. To address both challenges, we develop a SIM-enhanced wideband multiuser transceiver built on orthogonal frequency-division multiplexing with index modulation (OFDM-IM). The sparse activation of OFDM-IM confines high-fidelity equalization to the active tones, effectively widening the usable bandwidth. To make the design reliability-aware, we directly target the worst-link bit-error rate (BER) and adopt a max-min per-tone signal-to-interference-plus-noise ratio (SINR) as a principled surrogate, turning the reliability optimization tractable. For frame-rate inference and interpretability, we propose an unfolded projected-gradient-descent network (UPGD-Net) that double-unrolls across the SIM's layers and algorithmic iterations: each cell computes the analytic gradient from the cascaded precoder with a learnable per-iteration step size. Simulations on wideband multiuser downlinks show fast, monotone convergence, an evident layer-depth sweet spot, and consistent gains in worst-link BER and sum rate. By combining structural sparsity with a BER-driven, deep-unfolded optimization backbone, the proposed framework directly addresses the key wideband deficiencies of SIM.