Abstract:We introduce Lunara Aesthetic II, a publicly released, ethically sourced image dataset designed to support controlled evaluation and learning of contextual consistency in modern image generation and editing systems. The dataset comprises 2,854 anchor-linked variation pairs derived from original art and photographs created by Moonworks. Each variation pair applies contextual transformations, such as illumination, weather, viewpoint, scene composition, color tone, or mood; while preserving a stable underlying identity. Lunara Aesthetic II operationalizes identity-preserving contextual variation as a supervision signal while also retaining Lunara's signature high aesthetic scores. Results show high identity stability, strong target attribute realization, and a robust aesthetic profile that exceeds large-scale web datasets. Released under the Apache 2.0 license, Lunara Aesthetic II is intended for benchmarking, fine-tuning, and analysis of contextual generalization, identity preservation, and edit robustness in image generation and image-to-image systems with interpretable, relational supervision. The dataset is publicly available at: https://huggingface.co/datasets/moonworks/lunara-aesthetic-image-variations.
Abstract:The dataset spans diverse artistic styles, including regionally grounded aesthetics from the Middle East, Northern Europe, East Asia, and South Asia, alongside general categories such as sketch and oil painting. All images are generated using the Moonworks Lunara model and intentionally crafted to embody distinct, high-quality aesthetic styles, yielding a first-of-its-kind dataset with substantially higher aesthetic scores, exceeding even aesthetics-focused datasets, and general-purpose datasets by a larger margin. Each image is accompanied by a human-refined prompt and structured annotations that jointly describe salient objects, attributes, relationships, and stylistic cues. Unlike large-scale web-derived datasets that emphasize breadth over precision, the Lunara Aesthetic Dataset prioritizes aesthetic quality, stylistic diversity, and licensing transparency, and is released under the Apache 2.0 license to support research and unrestricted academic and commercial use.