Abstract:Counterfactual regret minimization (CFR) is a family of algorithms of no-regret learning dynamics capable of solving large-scale imperfect information games. There has been a notable lack of work on making CFR more computationally efficient. We propose implementing this algorithm as a series of dense and sparse matrix and vector operations, thereby making it highly parallelizable for a graphical processing unit. Our experiments show that our implementation performs up to about 352.5 times faster than OpenSpiel's Python implementation and up to about 22.2 times faster than OpenSpiel's C++ implementation and the speedup becomes more pronounced as the size of the game being solved grows.
Abstract:With large language models (LLMs), conversational search engines shift how users retrieve information from the web by enabling natural conversations to express their search intents over multiple turns. Users' natural conversation embodies rich but implicit signals of users' search intents and evaluation of search results to understand user experience with the system. However, it is underexplored how and why users ask follow-up queries to continue conversations with conversational search engines and how the follow-up queries signal users' satisfaction. From qualitative analysis of 250 conversational turns from an in-lab user evaluation of Naver Cue:, a commercial conversational search engine, we propose a taxonomy of 18 users' follow-up query patterns from conversational search, comprising two major axes: (1) users' motivations behind continuing conversations (N = 7) and (2) actions of follow-up queries (N = 11). Compared to the existing literature on query reformulations, we uncovered a new set of motivations and actions behind follow-up queries, including asking for subjective opinions or providing natural language feedback on the engine's responses. To analyze conversational search logs with our taxonomy in a scalable and efficient manner, we built an LLM-powered classifier (73% accuracy). With our classifier, we analyzed 2,061 conversational tuples collected from real-world usage logs of Cue: and examined how the conversation patterns from our taxonomy correlates with satisfaction. Our initial findings suggest some signals of dissatisfactions, such as Clarifying Queries, Excluding Condition, and Substituting Condition with follow-up queries. We envision our approach could contribute to automated evaluation of conversation search experience by providing satisfaction signals and grounds for realistic user simulations.
Abstract:Prevalent ungrammatical expressions and disfluencies in spontaneous speech from second language (L2) learners pose unique challenges to Automatic Speech Recognition (ASR) systems. However, few datasets are tailored to L2 learner speech. We publicly release LearnerVoice, a dataset consisting of 50.04 hours of audio and transcriptions of L2 learners' spontaneous speech. Our linguistic analysis reveals that transcriptions in our dataset contain L2S (L2 learner's Spontaneous speech) features, consisting of ungrammatical expressions and disfluencies (e.g., filler words, word repetitions, self-repairs, false starts), significantly more than native speech datasets. Fine-tuning whisper-small.en with LearnerVoice achieves a WER of 10.26%, 44.2% lower than vanilla whisper-small.en. Furthermore, our qualitative analysis indicates that 54.2% of errors from the vanilla model on LearnerVoice are attributable to L2S features, with 48.1% of them being reduced in the fine-tuned model.
Abstract:As Large Language Models (LLMs) are nondeterministic, the same input can generate different outputs, some of which may be incorrect or hallucinated. If run again, the LLM may correct itself and produce the correct answer. Unfortunately, most LLM-powered systems resort to single results which, correct or not, users accept. Having the LLM produce multiple outputs may help identify disagreements or alternatives. However, it is not obvious how the user will interpret conflicts or inconsistencies. To this end, we investigate how users perceive the AI model and comprehend the generated information when they receive multiple, potentially inconsistent, outputs. Through a preliminary study, we identified five types of output inconsistencies. Based on these categories, we conducted a study (N=252) in which participants were given one or more LLM-generated passages to an information-seeking question. We found that inconsistency within multiple LLM-generated outputs lowered the participants' perceived AI capacity, while also increasing their comprehension of the given information. Specifically, we observed that this positive effect of inconsistencies was most significant for participants who read two passages, compared to those who read three. Based on these findings, we present design implications that, instead of regarding LLM output inconsistencies as a drawback, we can reveal the potential inconsistencies to transparently indicate the limitations of these models and promote critical LLM usage.
Abstract:AI intent alignment, ensuring that AI produces outcomes as intended by users, is a critical challenge in human-AI interaction. The emergence of generative AI, including LLMs, has intensified the significance of this problem, as interactions increasingly involve users specifying desired results for AI systems. In order to support better AI intent alignment, we aim to explore human strategies for intent specification in human-human communication. By studying and comparing human-human and human-LLM communication, we identify key strategies that can be applied to the design of AI systems that are more effective at understanding and aligning with user intent. This study aims to advance toward a human-centered AI system by bringing together human communication strategies for the design of AI systems.
Abstract:Informational videos serve as a crucial source for explaining conceptual and procedural knowledge to novices and experts alike. When producing informational videos, editors edit videos by overlaying text/images or trimming footage to enhance the video quality and make it more engaging. However, video editing can be difficult and time-consuming, especially for novice video editors who often struggle with expressing and implementing their editing ideas. To address this challenge, we first explored how multimodality$-$natural language (NL) and sketching, which are natural modalities humans use for expression$-$can be utilized to support video editors in expressing video editing ideas. We gathered 176 multimodal expressions of editing commands from 10 video editors, which revealed the patterns of use of NL and sketching in describing edit intents. Based on the findings, we present ExpressEdit, a system that enables editing videos via NL text and sketching on the video frame. Powered by LLM and vision models, the system interprets (1) temporal, (2) spatial, and (3) operational references in an NL command and spatial references from sketching. The system implements the interpreted edits, which then the user can iterate on. An observational study (N=10) showed that ExpressEdit enhanced the ability of novice video editors to express and implement their edit ideas. The system allowed participants to perform edits more efficiently and generate more ideas by generating edits based on user's multimodal edit commands and supporting iterations on the editing commands. This work offers insights into the design of future multimodal interfaces and AI-based pipelines for video editing.
Abstract:With the rapid growth of scholarly archives, researchers subscribe to "paper alert" systems that periodically provide them with recommendations of recently published papers that are similar to previously collected papers. However, researchers sometimes struggle to make sense of nuanced connections between recommended papers and their own research context, as existing systems only present paper titles and abstracts. To help researchers spot these connections, we present PaperWeaver, an enriched paper alerts system that provides contextualized text descriptions of recommended papers based on user-collected papers. PaperWeaver employs a computational method based on Large Language Models (LLMs) to infer users' research interests from their collected papers, extract context-specific aspects of papers, and compare recommended and collected papers on these aspects. Our user study (N=15) showed that participants using PaperWeaver were able to better understand the relevance of recommended papers and triage them more confidently when compared to a baseline that presented the related work sections from recommended papers.
Abstract:This paper introduces the Poker Hand History (PHH) file format, designed to standardize the recording of poker hands across different game variants. Despite poker's widespread popularity in the mainstream culture as a mind sport and its prominence in the field of artificial intelligence (AI) research as a benchmark for imperfect information AI agents, it lacks a consistent format that humans can use to document poker hands across different variants that can also easily be parsed by machines. To address this gap in the literature, we propose the PHH format which provides a concise human-readable machine-friendly representation of hand history that comprehensively captures various details of the hand, ranging from initial game parameters and actions to contextual parameters including but not limited to the venue, players, and time control information. In the supplementary, we provide over 10,000 hands covering 11 different variants in the PHH format. Building on our previous work on PokerKit, a premier poker hand simulation tool, we demonstrate the usages of our open-source Python implementation of the PHH parser. The source code of the parser is available on GitHub: https://github.com/uoftcprg/pokerkit
Abstract:In convolutional neural networks (CNNs), padding plays a pivotal role in preserving spatial dimensions throughout the layers. Traditional padding techniques do not explicitly distinguish between the actual image content and the padded regions, potentially causing CNNs to incorrectly interpret the boundary pixels or regions that resemble boundaries. This ambiguity can lead to suboptimal feature extraction. To address this, we propose PadChannel, a novel padding method that encodes padding statuses as an additional input channel, enabling CNNs to easily distinguish genuine pixels from padded ones. By incorporating PadChannel into several prominent CNN architectures, we observed small performance improvements and notable reductions in the variances on the ImageNet-1K image classification task at marginal increases in the computational cost. The source code is available at https://github.com/AussieSeaweed/pad-channel
Abstract:Automated essay scoring (AES) provides a useful tool for students and instructors in writing classes by generating essay scores in real-time. However, previous AES models do not provide more specific rubric-based scores nor feedback on how to improve the essays, which can be even more important than the overall scores for learning. We present FABRIC, a pipeline to help students and instructors in English writing classes by automatically generating 1) the overall scores, 2) specific rubric-based scores, and 3) detailed feedback on how to improve the essays. Under the guidance of English education experts, we chose the rubrics for the specific scores as content, organization, and language. The first component of the FABRIC pipeline is DREsS, a real-world Dataset for Rubric-based Essay Scoring (DREsS). The second component is CASE, a Corruption-based Augmentation Strategy for Essays, with which we can improve the accuracy of the baseline model by 45.44%. The third component is EssayCoT, the Essay Chain-of-Thought prompting strategy which uses scores predicted from the AES model to generate better feedback. We evaluate the effectiveness of the new dataset DREsS and the augmentation strategy CASE quantitatively and show significant improvements over the models trained with existing datasets. We evaluate the feedback generated by EssayCoT with English education experts to show significant improvements in the helpfulness of the feedback across all rubrics. Lastly, we evaluate the FABRIC pipeline with students in a college English writing class who rated the generated scores and feedback with an average of 6 on the Likert scale from 1 to 7.