



Modeling soft pneumatic actuators with high precision remains a fundamental challenge due to their highly nonlinear and compliant characteristics. This paper proposes an innovative modeling framework based on fractional-order differential equations (FODEs) to accurately capture the dynamic behavior of soft materials. The unknown parameters within the fractional-order model are identified using particle swarm optimization (PSO), enabling parameter estimation directly from experimental data without reliance on pre-established material databases or empirical constitutive laws. The proposed approach effectively represents the complex deformation phenomena inherent in soft actuators. Experimental results validate the accuracy and robustness of the developed model, demonstrating improvement in predictive performance compared to conventional modeling techniques. The presented framework provides a data-efficient and database-independent solution for soft actuator modeling, advancing the precision and adaptability of soft robotic system design.
The growing integration of mobile robots in shared workspaces requires efficient path planning and coordination between the agents, accounting for safety and productivity. In this work, we propose a digital model-based optimization framework for mobile manipulators in human-robot collaborative environments, in order to determine the sequence of robot base poses and the task scheduling for the robot. The complete problem is treated as black-box, and Particle Swarm Optimization (PSO) is employed to balance conflicting Key-Performance Indicators (KPIs). We demonstrate improvements in cycle time, task sequencing, and adaptation to human presence in a collaborative box-packing scenario.




High-mobility scenarios are becoming increasingly critical in next-generation communication systems. While multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) stands as a prominent technology, its performance in such scenarios is fundamentally limited by Doppler-induced inter-carrier interference (ICI). Rate splitting multiple access (RSMA), recognized as a key multiple access technique for future communications, demonstrates superior interference management capabilities that we leverage to address this challenge. In specific, we propose a novel RSMA-assisted and transceiver-coordinated transmission scheme for ICI management in MIMO-OFDM system: (1) At the receiver side, we develop a hybrid successive interference cancellation (SIC) architecture with dynamic subcarrier clustering, which enables parallel intra-cluster and serial inter-cluster processing to balance complexity and performance. (2) At the transmitter~side, we design a matched hybrid precoding through formulated sum-rate maximization, solved via our proposed augmented boundary-compressed particle swarm optimization (ABC-PSO) algorithm for analog phase optimization and weighted minimum mean-square error (WMMSE)-based digital precoding iteration. Simulation results show that our scheme brings effective ICI suppression and enhanced system capacity with controlled complexity.
Rotatable intelligent reflecting surfaces (IRSs) introduce a new degree of freedom (DoF) for shaping wireless propagation by adaptively adjusting the orientation of IRSs. This paper considers an angle-dependent reflection model in a wireless communication system aided by two rotatable IRSs. Specifically, we study the joint design of the base station transmit beamforming, as well as the cooperative passive beamforming and orientation of the two IRSs, to maximize the received signal-to-noise ratio (SNR). Under the light-of-sight (LoS) channels, we first develop a particle swarm optimization (PSO) based method to determine the IRS rotation and derive an optimal rotation in a closed-form expression for a two-dimensional IRS deployment. Then, we extend the design to the general Rician fading channels by proposing an efficient alternating optimization and PSO (AO-PSO) algorithm. Numerical results validate the substantial gains achieved by the IRS rotation over fixed-IRS schemes and also demonstrate the superior performance of the double rotatable IRSs over a single rotatable IRS given a sufficient total number of IRS elements.
Shading faults remain one of the most critical challenges affecting photovoltaic (PV) system efficiency, as they not only reduce power generation but also disturb maximum power point tracking (MPPT). To address this issue, this study introduces a hybrid optimization framework that combines Fuzzy Logic Control (FLC) with a Shading-Aware Particle Swarm Optimization (SA-PSO) method. The proposed scheme is designed to adapt dynamically to both partial shading (20%-80%) and complete shading events, ensuring reliable global maximum power point (GMPP) detection. In this approach, the fuzzy controller provides rapid decision support based on shading patterns, while SA-PSO accelerates the search process and prevents the system from becoming trapped in local minima. A comparative performance assessment with the conventional Perturb and Observe (P\&O) algorithm highlights the advantages of the hybrid model, showing up to an 11.8% improvement in power output and a 62% reduction in tracking time. These results indicate that integrating intelligent control with shading-aware optimization can significantly enhance the resilience and energy yield of PV systems operating under complex real-world conditions.
This article investigates on the improvement and stabilization of alternating current (AC) and direct current (DC) output voltages in a Permanent Magnet Synchronous Generator (PMSG) driven by a vertical-axis tidal turbine using advanced control strategies. The research integrates artificial intelligence (AI)-based techniques to enhance voltage stability and efficiency. Initially, the Maximum Power Point Tracking (MPPT) approach based on Tip Speed Ratio (TSR) and Artificial Neural Network (ANN) Fuzzy logic controllers is explored. To further optimize the performance, Particle Swarm Optimization (PSO) and a hybrid ANN-PSO methodology are implemented. These strategies aim to refine the reference rotational speed of the turbine while minimizing deviations from optimal power extraction conditions. The simulation results of a tidal turbine operating at a water flow velocity of 1.5 m/s demonstrate that the PSO-based control approach significantly enhances the voltage stability compared to conventional MPPT-TSR and ANN-Fuzzy controllers. The hybrid ANN-PSO technique improves the voltage regulation by dynamically adapting to system variations and providing real-time reference speed adjustments. This research highlights the AI-based hybrid optimization benefit to stabilize the output voltage of tidal energy systems, thereby increasing reliability and efficiency in renewable energy applications.
Movable antenna (MA) is a promising technology for improving the performance of wireless communication systems by providing new degrees-of-freedom (DoFs) in antenna position optimization. However, existing works on MA systems have mostly considered element-wise single-layer MA (SL-MA) arrays, where all the MAs move within the given movable region, hence inevitably incurring high control complexity and hardware cost in practice. To address this issue, we propose in this letter a new two-layer MA array (TL-MA), where the positions of MAs are jointly determined by the large-scale movement of multiple subarrays and the small-scale fine-tuning of per-subarray MAs. In particular, an optimization problem is formulated to maximize the sum-rate of the TL-MA-aided communication system by jointly optimizing the subarray-positions, per-subarray (relative) MA positions, and receive beamforming. To solve this non-convex problem, we propose an alternating optimization (AO)-based particle swarm optimization (PSO) algorithm, which alternately optimizes the positions of subarrays and per-subarray MAs, given the optimal receive beamforming. Numerical results verify that the proposed TL-MA significantly reduces the sum-displacement of MA motors (i.e., the total moving distances of all motors) of element-wise SL-MA, while achieving comparable rate performance.
Rotatable intelligent reflecting surface (IRS) introduces a new spatial degree of freedom (DoF) by dynamically adjusting orientations without the need of changing its elements' positions in real time. To unleash the full potential of rotatable IRSs for wireless communications, this paper investigates the joint optimization of IRS rotation angles to maximize the minimum expected signal-to-noise ratio (SNR) over all locations within a given target area. We first propose an angle-dependent channel model that accurately characterizes the reception and reflection of each IRS element. Different from the conventional cosine-law assumption, the proposed model captures the practical electromagnetic characteristics of the IRS, including the effective reception area and reflection efficiency. For the single target location case, a particle swarm optimization (PSO)-based algorithm is developed to solve the SNR maximization problem, and a closed-form expression for a near-optimal solution is derived to provide useful insights. For the general area coverage enhancement case, the optimal rotation is obtained through a two-loop PSO-based iterative algorithm with null-point detection. In this algorithm, the outer loop updates the global rotation angles to maximize the minimum SNR over the target area, whereas the inner loop evaluates the SNR distribution within the area to identify the location corresponding to the minimum SNR through null-point detection. Numerical results demonstrate significant SNR improvement achieved by the proposed rotatable IRS design over various benchmark schemes under different system setups.




Recently, the pinching-antenna system (PASS) has emerged as a promising architecture owing to its ability to reconfigure large-scale path loss and signal phase by activating radiation points along a dielectric waveguide. However, existing studies mainly focus on line-shaped PASS architectures, whose limited spatial flexibility constrains their applicability in multiuser and indoor scenarios. In this paper, we propose a novel two-dimensional (2D) pinching-antenna system (2D-PASS) that extends the conventional line-shaped structure into a continuous dielectric waveguide plane, thereby forming a reconfigurable radiating plane capable of dynamic beam adaptation across a 2D spatial domain. An optimization framework is developed to maximize the minimum received signal-to-noise ratio (SNR) among user equipments (UEs) by adaptively adjusting the spatial configuration of pinching antennas (PAs), serving as an analog beamforming mechanism for dynamic spatial control. For the continuous-position scenario, a particle swarm optimization (PSO)-based algorithm is proposed to efficiently explore the nonconvex search space, while a discrete variant is introduced to accommodate practical hardware constraints with limited PA placement resolution. Simulation results demonstrate that the proposed 2D-PASS substantially improves the minimum SNR compared with conventional line-shaped PASS and fixed-position antenna (FPA) benchmarks, while maintaining robustness under varying user distributions and distances.
Breast cancer is considered the most critical and frequently diagnosed cancer in women worldwide, leading to an increase in cancer-related mortality. Early and accurate detection is crucial as it can help mitigate possible threats while improving survival rates. In terms of prediction, conventional diagnostic methods are often limited by variability, cost, and, most importantly, risk of misdiagnosis. To address these challenges, machine learning (ML) has emerged as a powerful tool for computer-aided diagnosis, with feature selection playing a vital role in improving model performance and interpretability. This research study proposes an integrated framework that incorporates customized Particle Swarm Optimization (PSO) for feature selection. This framework has been evaluated on a comprehensive set of 29 different models, spanning classical classifiers, ensemble techniques, neural networks, probabilistic algorithms, and instance-based algorithms. To ensure interpretability and clinical relevance, the study uses cross-validation in conjunction with explainable AI methods. Experimental evaluation showed that the proposed approach achieved a superior score of 99.1\% across all performance metrics, including accuracy and precision, while effectively reducing dimensionality and providing transparent, model-agnostic explanations. The results highlight the potential of combining swarm intelligence with explainable ML for robust, trustworthy, and clinically meaningful breast cancer diagnosis.