Abstract:Non Pneumatic tires offer a promising alternative to pneumatic tires. However, their discontinuous spoke structures present challenges in stiffness tuning, durability, and high speed vibration. This study introduces an integrated generative design and machine learning driven framework to optimize UPTIS type spoke geometries for passenger vehicles. Upper and lower spoke profiles were parameterized using high order polynomial representations, enabling the creation of approximately 250 generative designs through PCHIP based geometric variation. Machine learning models like KRR for stiffness and XGBoost for durability and vibration achieved strong predictive accuracy, reducing the reliance on computationally intensive FEM simulations. Optimization using Particle Swarm Optimization and Bayesian Optimization further enabled extensive performance refinement. The resulting designs demonstrate 53% stiffness tunability, up to 50% durability improvement, and 43% reduction in vibration compared to the baseline. PSO provided fast, targeted convergence, while Bayesian Optimization effectively explored multi objective tradeoffs. Overall, the proposed framework enables systematic development of high performance, next generation UPTIS spoke structures.
Abstract:Image-based deep learning provides a non-invasive, scalable solution for monitoring potato quality during storage, addressing key challenges such as sprout detection, weight loss estimation, and shelf-life prediction. In this study, images and corresponding weight data were collected over a 200-day period under controlled temperature and humidity conditions. Leveraging powerful pre-trained architectures of ResNet, VGG, DenseNet, and Vision Transformer (ViT), we designed two specialized models: (1) a high-precision binary classifier for sprout detection, and (2) an advanced multi-class predictor to estimate weight loss and forecast remaining shelf-life with remarkable accuracy. DenseNet achieved exceptional performance, with 98.03% accuracy in sprout detection. Shelf-life prediction models performed best with coarse class divisions (2-5 classes), achieving over 89.83% accuracy, while accuracy declined for finer divisions (6-8 classes) due to subtle visual differences and limited data per class. These findings demonstrate the feasibility of integrating image-based models into automated sorting and inventory systems, enabling early identification of sprouted potatoes and dynamic categorization based on storage stage. Practical implications include improved inventory management, differential pricing strategies, and reduced food waste across supply chains. While predicting exact shelf-life intervals remains challenging, focusing on broader class divisions ensures robust performance. Future research should aim to develop generalized models trained on diverse potato varieties and storage conditions to enhance adaptability and scalability. Overall, this approach offers a cost-effective, non-destructive method for quality assessment, supporting efficiency and sustainability in potato storage and distribution.