Interactive segmentation is the process of refining or correcting segmentation results with user input or guidance.
Motivated by the success of the Segment Anything Model (SAM) in promptable segmentation, recent studies leverage SAM to develop training-free solutions for few-shot segmentation, which aims to predict object masks in the target image based on a few reference exemplars. These SAM-based methods typically rely on point matching between reference and target images and use the matched dense points as prompts for mask prediction. However, we observe that dense points perform poorly in Cross-Domain Few-Shot Segmentation (CD-FSS), where target images are from medical or satellite domains. We attribute this issue to large domain shifts that disrupt the point-image interactions learned by SAM, and find that point density plays a crucial role under such conditions. To address this challenge, we propose Conditional Point Sparsification (CPS), a training-free approach that adaptively guides SAM interactions for cross-domain images based on reference exemplars. Leveraging ground-truth masks, the reference images provide reliable guidance for adaptively sparsifying dense matched points, enabling more accurate segmentation results. Extensive experiments demonstrate that CPS outperforms existing training-free SAM-based methods across diverse CD-FSS datasets.
Comprehensive panoramic scene understanding is critical for immersive applications, yet it remains challenging due to the scarcity of high-resolution, multi-task annotations. While perspective foundation models have achieved success through data scaling, directly adapting them to the panoramic domain often fails due to severe geometric distortions and coordinate system discrepancies. Furthermore, the underlying relations between diverse dense prediction tasks in spherical spaces are underexplored. To address these challenges, we propose MTPano, a robust multi-task panoramic foundation model established by a label-free training pipeline. First, to circumvent data scarcity, we leverage powerful perspective dense priors. We project panoramic images into perspective patches to generate accurate, domain-gap-free pseudo-labels using off-the-shelf foundation models, which are then re-projected to serve as patch-wise supervision. Second, to tackle the interference between task types, we categorize tasks into rotation-invariant (e.g., depth, segmentation) and rotation-variant (e.g., surface normals) groups. We introduce the Panoramic Dual BridgeNet, which disentangles these feature streams via geometry-aware modulation layers that inject absolute position and ray direction priors. To handle the distortion from equirectangular projections (ERP), we incorporate ERP token mixers followed by a dual-branch BridgeNet for interactions with gradient truncation, facilitating beneficial cross-task information sharing while blocking conflicting gradients from incompatible task attributes. Additionally, we introduce auxiliary tasks (image gradient, point map, etc.) to fertilize the cross-task learning process. Extensive experiments demonstrate that MTPano achieves state-of-the-art performance on multiple benchmarks and delivers competitive results against task-specific panoramic specialist foundation models.
Medical image segmentation is evolving from task-specific models toward generalizable frameworks. Recent research leverages Multi-modal Large Language Models (MLLMs) as autonomous agents, employing reinforcement learning with verifiable reward (RLVR) to orchestrate specialized tools like the Segment Anything Model (SAM). However, these approaches often rely on single-turn, rigid interaction strategies and lack process-level supervision during training, which hinders their ability to fully exploit the dynamic potential of interactive tools and leads to redundant actions. To bridge this gap, we propose MedSAM-Agent, a framework that reformulates interactive segmentation as a multi-step autonomous decision-making process. First, we introduce a hybrid prompting strategy for expert-curated trajectory generation, enabling the model to internalize human-like decision heuristics and adaptive refinement strategies. Furthermore, we develop a two-stage training pipeline that integrates multi-turn, end-to-end outcome verification with a clinical-fidelity process reward design to promote interaction parsimony and decision efficiency. Extensive experiments across 6 medical modalities and 21 datasets demonstrate that MedSAM-Agent achieves state-of-the-art performance, effectively unifying autonomous medical reasoning with robust, iterative optimization. Code is available \href{https://github.com/CUHK-AIM-Group/MedSAM-Agent}{here}.
This data article presents a dataset of 11,884 labeled images documenting a simulated blood extraction (phlebotomy) procedure performed on a training arm. Images were extracted from high-definition videos recorded under controlled conditions and curated to reduce redundancy using Structural Similarity Index Measure (SSIM) filtering. An automated face-anonymization step was applied to all videos prior to frame selection. Each image contains polygon annotations for five medically relevant classes: syringe, rubber band, disinfectant wipe, gloves, and training arm. The annotations were exported in a segmentation format compatible with modern object detection frameworks (e.g., YOLOv8), ensuring broad usability. This dataset is partitioned into training (70%), validation (15%), and test (15%) subsets and is designed to advance research in medical training automation and human-object interaction. It enables multiple applications, including phlebotomy tool detection, procedural step recognition, workflow analysis, conformance checking, and the development of educational systems that provide structured feedback to medical trainees. The data and accompanying label files are publicly available on Zenodo.
We present Neural Memory Object (NeMO), a novel object-centric representation that can be used to detect, segment and estimate the 6DoF pose of objects unseen during training using RGB images. Our method consists of an encoder that requires only a few RGB template views depicting an object to generate a sparse object-like point cloud using a learned UDF containing semantic and geometric information. Next, a decoder takes the object encoding together with a query image to generate a variety of dense predictions. Through extensive experiments, we show that our method can be used for few-shot object perception without requiring any camera-specific parameters or retraining on target data. Our proposed concept of outsourcing object information in a NeMO and using a single network for multiple perception tasks enhances interaction with novel objects, improving scalability and efficiency by enabling quick object onboarding without retraining or extensive pre-processing. We report competitive and state-of-the-art results on various datasets and perception tasks of the BOP benchmark, demonstrating the versatility of our approach. https://github.com/DLR-RM/nemo
We present BiTimeCrossNet (BTCNet), a multimodal self-supervised learning framework for long physiological recordings such as overnight sleep studies. While many existing approaches train on short segments treated as independent samples, BTCNet incorporates information about when each segment occurs within its parent recording, for example within a sleep session. BTCNet further learns pairwise interactions between physiological signals via cross-attention, without requiring task labels or sequence-level supervision. We evaluate BTCNet on pediatric sleep data across six downstream tasks, including sleep staging, arousal detection, and respiratory event detection. Under frozen-backbone linear probing, BTCNet consistently outperforms an otherwise identical non-time-aware variant, with gains that generalize to an independent pediatric dataset. Compared to existing multimodal self-supervised sleep models, BTCNet achieves strong performance, particularly on respiration-related tasks.
Live streaming has become a cornerstone of today's internet, enabling massive real-time social interactions. However, it faces severe risks arising from sparse, coordinated malicious behaviors among multiple participants, which are often concealed within normal activities and challenging to detect timely and accurately. In this work, we provide a pioneering study on risk assessment in live streaming rooms, characterized by weak supervision where only room-level labels are available. We formulate the task as a Multiple Instance Learning (MIL) problem, treating each room as a bag and defining structured user-timeslot capsules as instances. These capsules represent subsequences of user actions within specific time windows, encapsulating localized behavioral patterns. Based on this formulation, we propose AC-MIL, an Action-aware Capsule MIL framework that models both individual behaviors and group-level coordination patterns. AC-MIL captures multi-granular semantics and behavioral cues through a serial and parallel architecture that jointly encodes temporal dynamics and cross-user dependencies. These signals are integrated for robust room-level risk prediction, while also offering interpretable evidence at the behavior segment level. Extensive experiments on large-scale industrial datasets from Douyin demonstrate that AC-MIL significantly outperforms MIL and sequential baselines, establishing new state-of-the-art performance in room-level risk assessment for live streaming. Moreover, AC-MIL provides capsule-level interpretability, enabling identification of risky behavior segments as actionable evidence for intervention. The project page is available at: https://qiaoyran.github.io/AC-MIL/.
Multi-task problem solving has been shown to improve the accuracy of the individual tasks, which is an important feature for robots, as they have a limited resource. However, when the number of labels for each task is not equal, namely imbalanced data exist, a problem may arise due to insufficient number of samples, and labeling is not very easy for mobile robots in every environment. We propose a method that can learn tasks even in the absence of the ground truth labels for some of the tasks. We also provide a detailed analysis of the proposed method. An interesting finding is related to the interaction of the tasks. We show a methodology to find out which tasks can improve the performance of other tasks. We investigate this by training the teacher network with the task outputs such as depth as inputs. We further provide empirical evidence when trained with a small amount of data. We use semantic segmentation and depth estimation tasks on different datasets, NYUDv2 and Cityscapes.
Accurate extraction of rural roads from high-resolution remote sensing imagery is essential for infrastructure planning and sustainable development. However, this task presents unique challenges in rural settings due to several factors. These include high intra-class variability and low inter-class separability from diverse surface materials, frequent vegetation occlusions that disrupt spatial continuity, and narrow road widths that exacerbate detection difficulties. Existing methods, primarily optimized for structured urban environments, often underperform in these scenarios as they overlook such distinctive characteristics. To address these challenges, we propose DSFC-Net, a dual-encoder framework that synergistically fuses spatial and frequency-domain information. Specifically, a CNN branch is employed to capture fine-grained local road boundaries and short-range continuity, while a novel Spatial-Frequency Hybrid Transformer (SFT) is introduced to robustly model global topological dependencies against vegetation occlusions. Distinct from standard attention mechanisms that suffer from frequency bias, the SFT incorporates a Cross-Frequency Interaction Attention (CFIA) module that explicitly decouples high- and low-frequency information via a Laplacian Pyramid strategy. This design enables the dynamic interaction between spatial details and frequency-aware global contexts, effectively preserving the connectivity of narrow roads. Furthermore, a Channel Feature Fusion Module (CFFM) is proposed to bridge the two branches by adaptively recalibrating channel-wise feature responses, seamlessly integrating local textures with global semantics for accurate segmentation. Comprehensive experiments on the WHU-RuR+, DeepGlobe, and Massachusetts datasets validate the superiority of DSFC-Net over state-of-the-art approaches.
Ants are highly capable of grasping objects in clutter, and we have recently observed that this involves substantial use of their forelegs. The forelegs, more specifically the tarsi, have high friction microstructures (setal pads), are covered in hairs, and have a flexible under-actuated tip. Here we abstract these features to test their functional advantages for a novel low-cost gripper design, suitable for bin-picking applications. In our implementation, the gripper legs are long and slim, with high friction gripping pads, low friction hairs and single-segment tarsus-like structure to mimic the insect's setal pads, hairs, and the tarsi's interactive compliance. Experimental evaluation shows this design is highly robust for grasping a wide variety of individual consumer objects, with all grasp attempts successful. In addition, we demonstrate this design is effective for picking single objects from dense clutter, a task at which ants also show high competence. The work advances grasping technology and shed new light on the mechanical importance of hairy structures and tarsal flexibility in insects.