Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Debesh Jha

A Comprehensive Study on Colorectal Polyp Segmentation with ResUNet++, Conditional Random Field and Test-Time Augmentation


Jul 26, 2021
Debesh Jha, Pia H. Smedsrud, Dag Johansen, Thomas de Lange, HĂ„vard D. Johansen, PĂ„l Halvorsen, Michael A. Riegler

* Accepted at IEEE Journal of BioMedical and Health Informatics 

  Access Paper or Ask Questions

Exploring Deep Learning Methods for Real-Time Surgical Instrument Segmentation in Laparoscopy


Jul 05, 2021
Debesh Jha, Sharib Ali, Michael A. Riegler, Dag Johansen, HĂ„vard D. Johansen, PĂ„l Halvorsen

* BHI 2021 

  Access Paper or Ask Questions

PolypGen: A multi-center polyp detection and segmentation dataset for generalisability assessment


Jun 08, 2021
Sharib Ali, Debesh Jha, Noha Ghatwary, Stefano Realdon, Renato Cannizzaro, Osama E. Salem, Dominique Lamarque, Christian Daul, Kim V. Anonsen, Michael A. Riegler, PĂ„l Halvorsen, Jens Rittscher, Thomas de Lange, James E. East

* 14 pages 

  Access Paper or Ask Questions

Few-shot segmentation of medical images based on meta-learning with implicit gradients


Jun 06, 2021
Rabindra Khadga, Debesh Jha, Sharib Ali, Steven Hicks, Vajira Thambawita, Michael A. Riegler, PĂ„l Halvorsen


  Access Paper or Ask Questions

Progressively Normalized Self-Attention Network for Video Polyp Segmentation


May 24, 2021
Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, Ling Shao

* MICCAI 2021 (Provisional accept); Code: https://github.com/GewelsJI/PNS-Net 

  Access Paper or Ask Questions

MSRF-Net: A Multi-Scale Residual Fusion Network for Biomedical Image Segmentation


May 16, 2021
Abhishek Srivastava, Debesh Jha, Sukalpa Chanda, Umapada Pal, HĂ„vard D. Johansen, Dag Johansen, Michael A. Riegler, Sharib Ali, PĂ„l Halvorsen


  Access Paper or Ask Questions

NanoNet: Real-Time Polyp Segmentation in Video Capsule Endoscopy and Colonoscopy


Apr 22, 2021
Debesh Jha, Nikhil Kumar Tomar, Sharib Ali, Michael A. Riegler, HĂ„vard D. Johansen, Dag Johansen, Thomas de Lange, PĂ„l Halvorsen

* Accepted at CBMS 2021 

  Access Paper or Ask Questions

FANet: A Feedback Attention Network for Improved Biomedical Image Segmentation


Mar 31, 2021
Nikhil Kumar Tomar, Debesh Jha, Michael A. Riegler, HĂ„vard D. Johansen, Dag Johansen, Jens Rittscher, PĂ„l Halvorsen, Sharib Ali


  Access Paper or Ask Questions

LightLayers: Parameter Efficient Dense and Convolutional Layers for Image Classification


Jan 06, 2021
Debesh Jha, Anis Yazidi, Michael A. Riegler, Dag Johansen, HĂ„vard D. Johansen, PĂ„l Halvorsen


  Access Paper or Ask Questions

Automatic Polyp Segmentation using U-Net-ResNet50


Dec 30, 2020
Saruar Alam, Nikhil Kumar Tomar, Aarati Thakur, Debesh Jha, Ashish Rauniyar


  Access Paper or Ask Questions

DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation


Dec 30, 2020
Nikhil Kumar Tomar, Debesh Jha, Sharib Ali, HĂ„vard D. Johansen, Dag Johansen, Michael A. Riegler, PĂ„l Halvorsen


  Access Paper or Ask Questions

Medico Multimedia Task at MediaEval 2020: Automatic Polyp Segmentation


Dec 30, 2020
Debesh Jha, Steven A. Hicks, Krister Emanuelsen, HĂ„vard Johansen, Dag Johansen, Thomas de Lange, Michael A. Riegler, PĂ„l Halvorsen

* MediaEval 2020 

  Access Paper or Ask Questions

Real-Time Polyp Detection, Localisation and Segmentation in Colonoscopy Using Deep Learning


Nov 15, 2020
Debesh Jha, Sharib Ali, HĂ„vard D. Johansen, Dag D. Johansen, Jens Rittscher, Michael A. Riegler, PĂ„l Halvorsen


  Access Paper or Ask Questions

DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation


Jun 27, 2020
Debesh Jha, Michael A. Riegler, Dag Johansen, PĂ„l Halvorsen, HĂ„vard D. Johansen


  Access Paper or Ask Questions

An Extensive Study on Cross-Dataset Bias and Evaluation Metrics Interpretation for Machine Learning applied to Gastrointestinal Tract Abnormality Classification


May 08, 2020
Vajira Thambawita, Debesh Jha, Hugo Lewi Hammer, HĂ„vard D. Johansen, Dag Johansen, PĂ„l Halvorsen, Michael A. Riegler

* 30 pages, 12 figures, 8 tables, Accepted for ACM Transactions on Computing for Healthcare 

  Access Paper or Ask Questions

Robust Medical Instrument Segmentation Challenge 2019


Mar 23, 2020
Tobias Ross, Annika Reinke, Peter M. Full, Martin Wagner, Hannes Kenngott, Martin Apitz, Hellena Hempe, Diana Mindroc Filimon, Patrick Scholz, Thuy Nuong Tran, Pierangela Bruno, Pablo ArbelĂĄez, Gui-Bin Bian, Sebastian Bodenstedt, Jon Lindström Bolmgren, Laura Bravo-SĂĄnchez, Hua-Bin Chen, Cristina GonzĂĄlez, Dong Guo, PĂ„l Halvorsen, Pheng-Ann Heng, Enes Hosgor, Zeng-Guang Hou, Fabian Isensee, Debesh Jha, Tingting Jiang, Yueming Jin, Kadir Kirtac, Sabrina Kletz, Stefan Leger, Zhixuan Li, Klaus H. Maier-Hein, Zhen-Liang Ni, Michael A. Riegler, Klaus Schoeffmann, Ruohua Shi, Stefanie Speidel, Michael Stenzel, Isabell Twick, Gutai Wang, Jiacheng Wang, Liansheng Wang, Lu Wang, Yujie Zhang, Yan-Jie Zhou, Lei Zhu, Manuel Wiesenfarth, Annette Kopp-Schneider, Beat P. MĂŒller-Stich, Lena Maier-Hein

* A pre-print 

  Access Paper or Ask Questions

Kvasir-SEG: A Segmented Polyp Dataset


Nov 16, 2019
Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, PĂ„l Halvorsen, Thomas de Lange, Dag Johansen, HĂ„vard D. Johansen

* 12 pages, 4 figures, 26TH INTERNATIONAL CONFERENCE ON MULTIMEDIA MODELING 

  Access Paper or Ask Questions

ResUNet++: An Advanced Architecture for Medical Image Segmentation


Nov 16, 2019
Debesh Jha, Pia H. Smedsrud, Michael A. Riegler, Dag Johansen, Thomas de Lange, Pal Halvorsen, Havard D. Johansen

* 7 pages, 3 figures, 21st IEEE International Symposium on Multimedia 

  Access Paper or Ask Questions

The Medico-Task 2018: Disease Detection in the Gastrointestinal Tract using Global Features and Deep Learning


Oct 31, 2018
Vajira Thambawita, Debesh Jha, Michael Riegler, PĂ„l Halvorsen, Hugo Lewi Hammer, HĂ„vard D. Johansen, Dag Johansen

* MediaEval 2018 
* 2 pages + 1 page for references, 1 figure, Conference paper 

  Access Paper or Ask Questions