What is Imitation Learning? Imitation learning is a framework for learning a behavior policy from demonstrations. Usually, demonstrations are presented in the form of state-action trajectories, with each pair indicating the action to take at the state being visited. In order to learn the behavior policy, the demonstrated actions are usually utilized in two ways. The first, known as Behavior Cloning (BC), treats the action as the target label for each state, and then learns a generalized mapping from states to actions in a supervised manner. Another way, known as Inverse Reinforcement Learning (IRL), views the demonstrated actions as a sequence of decisions, and aims at finding a reward/cost function under which the demonstrated decisions are optimal.
Papers and Code
Jun 18, 2025
Abstract:Imitation learning (IL) aims to enable robots to perform tasks autonomously by observing a few human demonstrations. Recently, a variant of IL, called In-Context IL, utilized off-the-shelf large language models (LLMs) as instant policies that understand the context from a few given demonstrations to perform a new task, rather than explicitly updating network models with large-scale demonstrations. However, its reliability in the robotics domain is undermined by hallucination issues such as LLM-based instant policy, which occasionally generates poor trajectories that deviate from the given demonstrations. To alleviate this problem, we propose a new robust in-context imitation learning algorithm called the robust instant policy (RIP), which utilizes a Student's t-regression model to be robust against the hallucinated trajectories of instant policies to allow reliable trajectory generation. Specifically, RIP generates several candidate robot trajectories to complete a given task from an LLM and aggregates them using the Student's t-distribution, which is beneficial for ignoring outliers (i.e., hallucinations); thereby, a robust trajectory against hallucinations is generated. Our experiments, conducted in both simulated and real-world environments, show that RIP significantly outperforms state-of-the-art IL methods, with at least $26\%$ improvement in task success rates, particularly in low-data scenarios for everyday tasks. Video results available at https://sites.google.com/view/robustinstantpolicy.
* IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) 2025 accepted
Via

Jun 18, 2025
Abstract:Manipulation with whole-body contact by humanoid robots offers distinct advantages, including enhanced stability and reduced load. On the other hand, we need to address challenges such as the increased computational cost of motion generation and the difficulty of measuring broad-area contact. We therefore have developed a humanoid control system that allows a humanoid robot equipped with tactile sensors on its upper body to learn a policy for whole-body manipulation through imitation learning based on human teleoperation data. This policy, named tactile-modality extended ACT (TACT), has a feature to take multiple sensor modalities as input, including joint position, vision, and tactile measurements. Furthermore, by integrating this policy with retargeting and locomotion control based on a biped model, we demonstrate that the life-size humanoid robot RHP7 Kaleido is capable of achieving whole-body contact manipulation while maintaining balance and walking. Through detailed experimental verification, we show that inputting both vision and tactile modalities into the policy contributes to improving the robustness of manipulation involving broad and delicate contact.
* IEEE Robotics and Automation Letters 2025
Via

Jun 18, 2025
Abstract:Animals flexibly recombine a finite set of core motor primitives to meet diverse task demands, but existing behavior-segmentation methods oversimplify this process by imposing discrete syllables under restrictive generative assumptions. To reflect the animal behavior generation procedure, we introduce skill-based imitation learning (SKIL) for behavior understanding, a reinforcement learning-based imitation framework that (1) infers interpretable skill sets, i.e., latent basis functions of behavior, by leveraging representation learning on transition probabilities, and (2) parameterizes policies as dynamic mixtures of these skills. We validate our approach on a simple grid world, a discrete labyrinth, and unconstrained videos of freely moving animals. Across tasks, it identifies reusable skill components, learns continuously evolving compositional policies, and generates realistic trajectories beyond the capabilities of traditional discrete models. By exploiting generative behavior modeling with compositional representations, our method offers a concise, principled account of how complex animal behaviors emerge from dynamic combinations of fundamental motor primitives.
* 9 pages and 4 figures for the main text
Via

Jun 16, 2025
Abstract:This paper comprehensively surveys research trends in imitation learning for contact-rich robotic tasks. Contact-rich tasks, which require complex physical interactions with the environment, represent a central challenge in robotics due to their nonlinear dynamics and sensitivity to small positional deviations. The paper examines demonstration collection methodologies, including teaching methods and sensory modalities crucial for capturing subtle interaction dynamics. We then analyze imitation learning approaches, highlighting their applications to contact-rich manipulation. Recent advances in multimodal learning and foundation models have significantly enhanced performance in complex contact tasks across industrial, household, and healthcare domains. Through systematic organization of current research and identification of challenges, this survey provides a foundation for future advancements in contact-rich robotic manipulation.
* 47pages, 1 figures
Via

Jun 17, 2025
Abstract:Imitation learning has driven the development of generalist policies capable of autonomously solving multiple tasks. However, when a pretrained policy makes errors during deployment, there are limited mechanisms for users to correct its behavior. While collecting additional data for finetuning can address such issues, doing so for each downstream use case is inefficient at deployment. My research proposes an alternative: keeping pretrained policies frozen as a fixed skill repertoire while allowing user interactions to guide behavior generation toward user preferences at inference time. By making pretrained policies steerable, users can help correct policy errors when the model struggles to generalize-without needing to finetune the policy. Specifically, I propose (1) inference-time steering, which leverages user interactions to switch between discrete skills, and (2) task and motion imitation, which enables user interactions to edit continuous motions while satisfying task constraints defined by discrete symbolic plans. These frameworks correct misaligned policy predictions without requiring additional training, maximizing the utility of pretrained models while achieving inference-time user objectives.
* MIT Robotics PhD Thesis
Via

Jun 17, 2025
Abstract:People need to internalize the skills of AI agents to improve their own capabilities. Our paper focuses on Mahjong, a multiplayer game involving imperfect information and requiring effective long-term decision-making amidst randomness and hidden information. Through the efforts of AI researchers, several impressive Mahjong AI agents have already achieved performance levels comparable to those of professional human players; however, these agents are often treated as black boxes from which few insights can be gleaned. This paper introduces Mxplainer, a parameterized search algorithm that can be converted into an equivalent neural network to learn the parameters of black-box agents. Experiments conducted on AI and human player data demonstrate that the learned parameters provide human-understandable insights into these agents' characteristics and play styles. In addition to analyzing the learned parameters, we also showcase how our search-based framework can locally explain the decision-making processes of black-box agents for most Mahjong game states.
Via

Jun 17, 2025
Abstract:We present Sparsh-X, the first multisensory touch representations across four tactile modalities: image, audio, motion, and pressure. Trained on ~1M contact-rich interactions collected with the Digit 360 sensor, Sparsh-X captures complementary touch signals at diverse temporal and spatial scales. By leveraging self-supervised learning, Sparsh-X fuses these modalities into a unified representation that captures physical properties useful for robot manipulation tasks. We study how to effectively integrate real-world touch representations for both imitation learning and tactile adaptation of sim-trained policies, showing that Sparsh-X boosts policy success rates by 63% over an end-to-end model using tactile images and improves robustness by 90% in recovering object states from touch. Finally, we benchmark Sparsh-X ability to make inferences about physical properties, such as object-action identification, material-quantity estimation, and force estimation. Sparsh-X improves accuracy in characterizing physical properties by 48% compared to end-to-end approaches, demonstrating the advantages of multisensory pretraining for capturing features essential for dexterous manipulation.
Via

Jun 17, 2025
Abstract:Dexterous grasping in cluttered scenes presents significant challenges due to diverse object geometries, occlusions, and potential collisions. Existing methods primarily focus on single-object grasping or grasp-pose prediction without interaction, which are insufficient for complex, cluttered scenes. Recent vision-language-action models offer a potential solution but require extensive real-world demonstrations, making them costly and difficult to scale. To address these limitations, we revisit the sim-to-real transfer pipeline and develop key techniques that enable zero-shot deployment in reality while maintaining robust generalization. We propose ClutterDexGrasp, a two-stage teacher-student framework for closed-loop target-oriented dexterous grasping in cluttered scenes. The framework features a teacher policy trained in simulation using clutter density curriculum learning, incorporating both a novel geometry and spatially-embedded scene representation and a comprehensive safety curriculum, enabling general, dynamic, and safe grasping behaviors. Through imitation learning, we distill the teacher's knowledge into a student 3D diffusion policy (DP3) that operates on partial point cloud observations. To the best of our knowledge, this represents the first zero-shot sim-to-real closed-loop system for target-oriented dexterous grasping in cluttered scenes, demonstrating robust performance across diverse objects and layouts. More details and videos are available at https://clutterdexgrasp.github.io/.
Via

Jun 15, 2025
Abstract:Reinforcement learning for multi-goal robot manipulation tasks poses significant challenges due to the diversity and complexity of the goal space. Techniques such as Hindsight Experience Replay (HER) have been introduced to improve learning efficiency for such tasks. More recently, researchers have combined HER with advanced imitation learning methods such as Generative Adversarial Imitation Learning (GAIL) to integrate demonstration data and accelerate training speed. However, demonstration data often fails to provide enough coverage for the goal space, especially when acquired from human teleoperation. This biases the learning-from-demonstration process toward mastering easier sub-tasks instead of tackling the more challenging ones. In this work, we present Goal-based Self-Adaptive Generative Adversarial Imitation Learning (Goal-SAGAIL), a novel framework specifically designed for multi-goal robot manipulation tasks. By integrating self-adaptive learning principles with goal-conditioned GAIL, our approach enhances imitation learning efficiency, even when limited, suboptimal demonstrations are available. Experimental results validate that our method significantly improves learning efficiency across various multi-goal manipulation scenarios -- including complex in-hand manipulation tasks -- using suboptimal demonstrations provided by both simulation and human experts.
* 6 pages, 5 figures
Via

Jun 17, 2025
Abstract:Diffusion Policy (DP) enables robots to learn complex behaviors by imitating expert demonstrations through action diffusion. However, in practical applications, hardware limitations often degrade data quality, while real-time constraints restrict model inference to instantaneous state and scene observations. These limitations seriously reduce the efficacy of learning from expert demonstrations, resulting in failures in object localization, grasp planning, and long-horizon task execution. To address these challenges, we propose Causal Diffusion Policy (CDP), a novel transformer-based diffusion model that enhances action prediction by conditioning on historical action sequences, thereby enabling more coherent and context-aware visuomotor policy learning. To further mitigate the computational cost associated with autoregressive inference, a caching mechanism is also introduced to store attention key-value pairs from previous timesteps, substantially reducing redundant computations during execution. Extensive experiments in both simulated and real-world environments, spanning diverse 2D and 3D manipulation tasks, demonstrate that CDP uniquely leverages historical action sequences to achieve significantly higher accuracy than existing methods. Moreover, even when faced with degraded input observation quality, CDP maintains remarkable precision by reasoning through temporal continuity, which highlights its practical robustness for robotic control under realistic, imperfect conditions.
Via
