Abstract:Imitation learning traditionally requires complete state-action demonstrations from optimal or near-optimal experts. These requirements severely limit practical applicability, as many real-world scenarios provide only state observations without corresponding actions and expert performance is often suboptimal. In this paper we introduce a deep implicit imitation reinforcement learning framework that addresses both limitations by combining deep reinforcement learning with implicit imitation learning from observation-only datasets. Our main algorithm, Deep Implicit Imitation Q-Network (DIIQN), employs an action inference mechanism that reconstructs expert actions through online exploration and integrates a dynamic confidence mechanism that adaptively balances expert-guided and self-directed learning. This enables the agent to leverage expert guidance for accelerated training while maintaining capacity to surpass suboptimal expert performance. We further extend our framework with a Heterogeneous Actions DIIQN (HA-DIIQN) algorithm to tackle scenarios where expert and agent possess different action sets, a challenge previously unaddressed in the implicit imitation learning literature. HA-DIIQN introduces an infeasibility detection mechanism and a bridging procedure identifying alternative pathways connecting agent capabilities to expert guidance when direct action replication is impossible. Our experimental results demonstrate that DIIQN achieves up to 130% higher episodic returns compared to standard DQN, while consistently outperforming existing implicit imitation methods that cannot exceed expert performance. In heterogeneous action settings, HA-DIIQN learns up to 64% faster than baselines, leveraging expert datasets unusable by conventional approaches. Extensive parameter sensitivity analysis reveals the framework's robustness across varying dataset sizes and hyperparameter configurations.
Abstract:Imitation learning (IL) enables agents to acquire skills by observing and replicating the behavior of one or multiple experts. In recent years, advances in deep learning have significantly expanded the capabilities and scalability of imitation learning across a range of domains, where expert data can range from full state-action trajectories to partial observations or unlabeled sequences. Alongside this growth, novel approaches have emerged, with new methodologies being developed to address longstanding challenges such as generalization, covariate shift, and demonstration quality. In this survey, we review the latest advances in imitation learning research, highlighting recent trends, methodological innovations, and practical applications. We propose a novel taxonomy that is distinct from existing categorizations to better reflect the current state of the IL research stratum and its trends. Throughout the survey, we critically examine the strengths, limitations, and evaluation practices of representative works, and we outline key challenges and open directions for future research.