Abstract:Vision Language Action (VLA) models enable instruction following manipulation, yet dualarm deployment remains unsafe due to under modeled selfcollisions between arms and grasped objects. We introduce CoFreeVLA, which augments an endtoend VLA with a short horizon selfcollision risk estimator that predicts collision likelihood from proprioception, visual embeddings, and planned actions. The estimator gates risky commands, recovers to safe states via risk-guided adjustments, and shapes policy refinement for safer rollouts. It is pre-trained with model-based collision labels and posttrained on real robot rollouts for calibration. On five bimanual tasks with the PiPER robot arm, CoFreeVLA reduces selfcollisions and improves success rates versus RDT and APEX.
Abstract:Diffusion-based policies have recently shown strong results in robot manipulation, but their extension to multi-task scenarios is hindered by the high cost of scaling model size and demonstrations. We introduce Skill Mixture-of-Experts Policy (SMP), a diffusion-based mixture-of-experts policy that learns a compact orthogonal skill basis and uses sticky routing to compose actions from a small, task-relevant subset of experts at each step. A variational training objective supports this design, and adaptive expert activation at inference yields fast sampling without oversized backbones. We validate SMP in simulation and on a real dual-arm platform with multi-task learning and transfer learning tasks, where SMP achieves higher success rates and markedly lower inference cost than large diffusion baselines. These results indicate a practical path toward scalable, transferable multi-task manipulation: learn reusable skills once, activate only what is needed, and adapt quickly when tasks change.
Abstract:In visuomotor policy learning, diffusion-based imitation learning has become widely adopted for its ability to capture diverse behaviors. However, approaches built on ordinary and stochastic denoising processes struggle to jointly achieve fast sampling and strong multi-modality. To address these challenges, we propose the Hybrid Consistency Policy (HCP). HCP runs a short stochastic prefix up to an adaptive switch time, and then applies a one-step consistency jump to produce the final action. To align this one-jump generation, HCP performs time-varying consistency distillation that combines a trajectory-consistency objective to keep neighboring predictions coherent and a denoising-matching objective to improve local fidelity. In both simulation and on a real robot, HCP with 25 SDE steps plus one jump approaches the 80-step DDPM teacher in accuracy and mode coverage while significantly reducing latency. These results show that multi-modality does not require slow inference, and a switch time decouples mode retention from speed. It yields a practical accuracy efficiency trade-off for robot policies.