Sampling from a distribution $p(x) \propto e^{-\mathcal{E}(x)}$ known up to a normalising constant is an important and challenging problem in statistics. Recent years have seen the rise of a new family of amortised sampling algorithms, commonly referred to as diffusion samplers, that enable fast and efficient sampling from an unnormalised density. Such algorithms have been widely studied for continuous-space sampling tasks; however, their application to problems in discrete space remains largely unexplored. Although some progress has been made in this area, discrete diffusion samplers do not take full advantage of ideas commonly used for continuous-space sampling. In this paper, we propose to bridge this gap by introducing off-policy training techniques for discrete diffusion samplers. We show that these techniques improve the performance of discrete samplers on both established and new synthetic benchmarks. Next, we generalise discrete diffusion samplers to the task of bridging between two arbitrary distributions, introducing data-to-energy Schrödinger bridge training for the discrete domain for the first time. Lastly, we showcase the application of the proposed diffusion samplers to data-free posterior sampling in the discrete latent spaces of image generative models.
Distribution shift is a common challenge in medical images obtained from different clinical centers, significantly hindering the deployment of pre-trained semantic segmentation models in real-world applications across multiple domains. Continual Test-Time Adaptation(CTTA) has emerged as a promising approach to address cross-domain shifts during continually evolving target domains. Most existing CTTA methods rely on incrementally updating model parameters, which inevitably suffer from error accumulation and catastrophic forgetting, especially in long-term adaptation. Recent prompt-tuning-based works have shown potential to mitigate the two issues above by updating only visual prompts. While these approaches have demonstrated promising performance, several limitations remain:1)lacking multi-scale prompt diversity, 2)inadequate incorporation of instance-specific knowledge, and 3)risk of privacy leakage. To overcome these limitations, we propose Multi-scale Global-Instance Prompt Tuning(MGIPT), to enhance scale diversity of prompts and capture both global- and instance-level knowledge for robust CTTA. Specifically, MGIPT consists of an Adaptive-scale Instance Prompt(AIP) and a Multi-scale Global-level Prompt(MGP). AIP dynamically learns lightweight and instance-specific prompts to mitigate error accumulation with adaptive optimal-scale selection mechanism. MGP captures domain-level knowledge across different scales to ensure robust adaptation with anti-forgetting capabilities. These complementary components are combined through a weighted ensemble approach, enabling effective dual-level adaptation that integrates both global and local information. Extensive experiments on medical image segmentation benchmarks demonstrate that our MGIPT outperforms state-of-the-art methods, achieving robust adaptation across continually changing target domains.
Contrastive Language-Image Pre-training (CLIP) has achieved widely applications in various computer vision tasks, e.g., text-to-image generation, Image-Text retrieval and Image captioning. However, CLIP suffers from high memory and computation cost, which prohibits its usage to the resource-limited application scenarios. Existing CLIP compression methods typically reduce the size of pre-trained CLIP weights by selecting their subset as weight inheritance for further retraining via mask optimization or important weight measurement. However, these select-based weight inheritance often compromises the feature presentation ability, especially on the extreme compression. In this paper, we propose a novel mapping-based CLIP compression framework, CLIP-Map. It leverages learnable matrices to map and combine pretrained weights by Full-Mapping with Kronecker Factorization, aiming to preserve as much information from the original weights as possible. To mitigate the optimization challenges introduced by the learnable mapping, we propose Diagonal Inheritance Initialization to reduce the distribution shifting problem for efficient and effective mapping learning. Extensive experimental results demonstrate that the proposed CLIP-Map outperforms select-based frameworks across various compression ratios, with particularly significant gains observed under high compression settings.
Being a cornerstone of temporal analysis, change detection has been playing a pivotal role in modern earth observation. Existing change detection methods rely on the Siamese encoder to individually extract temporal features followed by temporal fusion. Subsequently, these methods design sophisticated decoders to improve the change detection performance without taking into consideration the complexity of the model. These aforementioned issues intensify the overall computational cost as well as the network's complexity which is undesirable. Alternatively, few methods utilize the early fusion scheme to combine the temporal images. These methods prevent the extra overhead of Siamese encoder, however, they also rely on sophisticated decoders for better performance. In addition, these methods demonstrate inferior performance as compared to late fusion based methods. To bridge these gaps, we introduce encoder only change detection (EoCD) that is a simple and effective method for the change detection task. The proposed method performs the early fusion of the temporal data and replaces the decoder with a parameter-free multiscale feature fusion module thereby significantly reducing the overall complexity of the model. EoCD demonstrate the optimal balance between the change detection performance and the prediction speed across a variety of encoder architectures. Additionally, EoCD demonstrate that the performance of the model is predominantly dependent on the encoder network, making the decoder an additional component. Extensive experimentation on four challenging change detection datasets reveals the effectiveness of the proposed method.
We consider a novel algorithm, for the completion of partially observed low-rank tensors, where each entry of the tensor can be chosen from a discrete finite alphabet set, such as in common image processing problems, where the entries represent the RGB values. The proposed low-rank tensor completion (TC) method builds on the conventional nuclear norm (NN) minimization-based low-rank TC paradigm, through the addition of a discrete-aware regularizer, which enforces discreteness in the objective of the problem, by an $\ell_0$-norm regularizer that is approximated by a continuous and differentiable function normalized via fractional programming (FP) under a proximal gradient (PG) framework, in order to solve the proposed problem. Simulation results demonstrate the superior performance of the new method both in terms of normalized mean square error (NMSE) and convergence, compared to the conventional state of-the-art (SotA) techniques, including NN minimization approaches, as well as a mixture of the latter with a matrix factorization approach.
Vision Transformers (ViTs) have demonstrated strong performance across a range of computer vision tasks by modeling long-range spatial interactions via self-attention. However, channel-wise mixing in ViTs remains static, relying on fixed multilayer perceptrons (MLPs) that lack adaptability to input content. We introduce 'CAViT', a dual-attention architecture that replaces the static MLP with a dynamic, attention-based mechanism for feature interaction. Each Transformer block in CAViT performs spatial self-attention followed by channel-wise self-attention, allowing the model to dynamically recalibrate feature representations based on global image context. This unified and content-aware token mixing strategy enhances representational expressiveness without increasing depth or complexity. We validate CAViT across five benchmark datasets spanning both natural and medical domains, where it outperforms the standard ViT baseline by up to +3.6% in accuracy, while reducing parameter count and FLOPs by over 30%. Qualitative attention maps reveal sharper and semantically meaningful activation patterns, validating the effectiveness of our attention-driven token mixing.
We propose LOGDIFF (Logical Guidance for the Exact Composition of Diffusion Models), a guidance framework for diffusion models that enables principled constrained generation with complex logical expressions at inference time. We study when exact score-based guidance for complex logical formulas can be obtained from guidance signals associated with atomic properties. First, we derive an exact Boolean calculus that provides a sufficient condition for exact logical guidance. Specifically, if a formula admits a circuit representation in which conjunctions combine conditionally independent subformulas and disjunctions combine subformulas that are either conditionally independent or mutually exclusive, exact logical guidance is achievable. In this case, the guidance signal can be computed exactly from atomic scores and posterior probabilities using an efficient recursive algorithm. Moreover, we show that, for commonly encountered classes of distributions, any desired Boolean formula is compilable into such a circuit representation. Second, by combining atomic guidance scores with posterior probability estimates, we introduce a hybrid guidance approach that bridges classifierguidance and classifier-free guidance, applicable to both compositional logical guidance and standard conditional generation. We demonstrate the effectiveness of our framework on multiple image and protein structure generation tasks.
Visual autoregressive (VAR) models generate images through next-scale prediction, naturally achieving coarse-to-fine, fast, high-fidelity synthesis mirroring human perception. In practice, this hierarchy can drift at inference time, as limited capacity and accumulated error cause the model to deviate from its coarse-to-fine nature. We revisit this limitation from an information-theoretic perspective and deduce that ensuring each scale contributes high-frequency content not explained by earlier scales mitigates the train-inference discrepancy. With this insight, we propose Scaled Spatial Guidance (SSG), training-free, inference-time guidance that steers generation toward the intended hierarchy while maintaining global coherence. SSG emphasizes target high-frequency signals, defined as the semantic residual, isolated from a coarser prior. To obtain this prior, we leverage a principled frequency-domain procedure, Discrete Spatial Enhancement (DSE), which is devised to sharpen and better isolate the semantic residual through frequency-aware construction. SSG applies broadly across VAR models leveraging discrete visual tokens, regardless of tokenization design or conditioning modality. Experiments demonstrate SSG yields consistent gains in fidelity and diversity while preserving low latency, revealing untapped efficiency in coarse-to-fine image generation. Code is available at https://github.com/Youngwoo-git/SSG.
Fringe projection profilometry-based 3-D reconstruction of objects with high reflectivity and low surface roughness remains a significant challenge. When measuring such glossy surfaces, specular reflection and indirect illumination often lead to severe distortion or loss of the projected fringe patterns. To address these issues, we propose a latent diffusion-based structured light for reflective objects (LD-SLRO). Phase-shifted fringe images captured from highly reflective surfaces are first encoded to extract latent representations that capture surface reflectance characteristics. These latent features are then used as conditional inputs to a latent diffusion model, which probabilistically suppresses reflection-induced artifacts and recover lost fringe information, yielding high-quality fringe images. The proposed components, including the specular reflection encoder, time-variant channel affine layer, and attention modules, further improve fringe restoration quality. In addition, LD-SLRO provides high flexibility in configuring the input and output fringe sets. Experimental results demonstrate that the proposed method improves both fringe quality and 3-D reconstruction accuracy over state-of-the-art methods, reducing the average root-mean-squared error from 1.8176 mm to 0.9619 mm.
In modern dense 3D reconstruction, feed-forward systems (e.g., VGGT, pi3) focus on end-to-end matching and geometry prediction but do not explicitly output the novel view synthesis (NVS). Neural rendering-based approaches offer high-fidelity NVS and detailed geometry from posed images, yet they typically assume fixed camera poses and can be sensitive to pose errors. As a result, it remains non-trivial to obtain a single framework that can offer accurate poses, reliable depth, high-quality rendering, and accurate 3D surfaces from casually captured views. We present NeVStereo, a NeRF-driven NVS-stereo architecture that aims to jointly deliver camera poses, multi-view depth, novel view synthesis, and surface reconstruction from multi-view RGB-only inputs. NeVStereo combines NeRF-based NVS for stereo-friendly renderings, confidence-guided multi-view depth estimation, NeRF-coupled bundle adjustment for pose refinement, and an iterative refinement stage that updates both depth and the radiance field to improve geometric consistency. This design mitigated the common NeRF-based issues such as surface stacking, artifacts, and pose-depth coupling. Across indoor, outdoor, tabletop, and aerial benchmarks, our experiments indicate that NeVStereo achieves consistently strong zero-shot performance, with up to 36% lower depth error, 10.4% improved pose accuracy, 4.5% higher NVS fidelity, and state-of-the-art mesh quality (F1 91.93%, Chamfer 4.35 mm) compared to existing prestigious methods.