Abstract:Recent advancements in 3D foundation models have enabled the generation of high-fidelity assets, yet precise 3D manipulation remains a significant challenge. Existing 3D editing frameworks often face a difficult trade-off between visual controllability, geometric consistency, and scalability. Specifically, optimization-based methods are prohibitively slow, multi-view 2D propagation techniques suffer from visual drift, and training-free latent manipulation methods are inherently bound by frozen priors and cannot directly benefit from scaling. In this work, we present ShapeUP, a scalable, image-conditioned 3D editing framework that formulates editing as a supervised latent-to-latent translation within a native 3D representation. This formulation allows ShapeUP to build on a pretrained 3D foundation model, leveraging its strong generative prior while adapting it to editing through supervised training. In practice, ShapeUP is trained on triplets consisting of a source 3D shape, an edited 2D image, and the corresponding edited 3D shape, and learns a direct mapping using a 3D Diffusion Transformer (DiT). This image-as-prompt approach enables fine-grained visual control over both local and global edits and achieves implicit, mask-free localization, while maintaining strict structural consistency with the original asset. Our extensive evaluations demonstrate that ShapeUP consistently outperforms current trained and training-free baselines in both identity preservation and edit fidelity, offering a robust and scalable paradigm for native 3D content creation.
Abstract:Deepfakes are on the rise, with increased sophistication and prevalence allowing for high-profile social engineering attacks. Detecting them in the wild is therefore important as ever, giving rise to new approaches breaking benchmark records in this task. In line with previous work, we show that recently developed state-of-the-art detectors are susceptible to classical adversarial attacks, even in a highly-realistic black-box setting, putting their usability in question. We argue that crucial 'robust features' of deepfakes are in their higher semantics, and follow that with evidence that a detector based on a semantic embedding model is less susceptible to black-box perturbation attacks. We show that large visuo-lingual models like GPT-4o can perform zero-shot deepfake detection better than current state-of-the-art methods, and introduce a novel attack based on high-level semantic manipulation. Finally, we argue that hybridising low- and high-level detectors can improve adversarial robustness, based on their complementary strengths and weaknesses.