Abstract:Internet memes are powerful tools for communication, capable of spreading political, psychological, and sociocultural ideas. However, they can be harmful and can be used to disseminate hate toward targeted individuals or groups. Although previous studies have focused on designing new detection methods, these often rely on modal-complete data, such as text and images. In real-world settings, however, modalities like text may be missing due to issues like poor OCR quality, making existing methods sensitive to missing information and leading to performance deterioration. To address this gap, in this paper, we present the first-of-its-kind work to comprehensively investigate the behavior of harmful meme detection methods in the presence of modal-incomplete data. Specifically, we propose a new baseline method that learns a shared representation for multiple modalities by projecting them independently. These shared representations can then be leveraged when data is modal-incomplete. Experimental results on two benchmark datasets demonstrate that our method outperforms existing approaches when text is missing. Moreover, these results suggest that our method allows for better integration of visual features, reducing dependence on text and improving robustness in scenarios where textual information is missing. Our work represents a significant step forward in enabling the real-world application of harmful meme detection, particularly in situations where a modality is absent.
Abstract:Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.
Abstract:Face-voice association is widely studied in multimodal learning and is approached representing faces and voices with embeddings that are close for a same person and well separated from those of others. Previous work achieved this with loss functions. Recent advancements in classification have shown that the discriminative ability of embeddings can be strengthened by imposing maximum class separation as inductive bias. This technique has never been used in the domain of face-voice association, and this work aims at filling this gap. More specifically, we develop a method for face-voice association that imposes maximum class separation among multimodal representations of different speakers as an inductive bias. Through quantitative experiments we demonstrate the effectiveness of our approach, showing that it achieves SOTA performance on two task formulation of face-voice association. Furthermore, we carry out an ablation study to show that imposing inductive bias is most effective when combined with losses for inter-class orthogonality. To the best of our knowledge, this work is the first that applies and demonstrates the effectiveness of maximum class separation as an inductive bias in multimodal learning; it hence paves the way to establish a new paradigm.
Abstract:Over half of the world's population is bilingual and people often communicate under multilingual scenarios. The Face-Voice Association in Multilingual Environments (FAME) 2026 Challenge, held at ICASSP 2026, focuses on developing methods for face-voice association that are effective when the language at test-time is different than the training one. This report provides a brief summary of the challenge.
Abstract:In recent years, multimodal anomaly detection methods have demonstrated remarkable performance improvements over video-only models. However, real-world multimodal data is often corrupted due to unforeseen environmental distortions. In this paper, we present the first-of-its-kind work that comprehensively investigates the adverse effects of corrupted modalities on multimodal anomaly detection task. To streamline this work, we propose RobustA, a carefully curated evaluation dataset to systematically observe the impacts of audio and visual corruptions on the overall effectiveness of anomaly detection systems. Furthermore, we propose a multimodal anomaly detection method, which shows notable resilience against corrupted modalities. The proposed method learns a shared representation space for different modalities and employs a dynamic weighting scheme during inference based on the estimated level of corruption. Our work represents a significant step forward in enabling the real-world application of multimodal anomaly detection, addressing situations where the likely events of modality corruptions occur. The proposed evaluation dataset with corrupted modalities and respective extracted features will be made publicly available.
Abstract:Music is characterized by aspects related to different modalities, such as the audio signal, the lyrics, or the music video clips. This has motivated the development of multimodal datasets and methods for Music Information Retrieval (MIR) tasks such as genre classification or autotagging. Music can be described at different levels of granularity, for instance defining genres at the level of artists or music albums. However, most datasets for multimodal MIR neglect this aspect and provide data at the level of individual music tracks. We aim to fill this gap by providing Music4All Artist and Album (Music4All A+A), a dataset for multimodal MIR tasks based on music artists and albums. Music4All A+A is built on top of the Music4All-Onion dataset, an existing track-level dataset for MIR tasks. Music4All A+A provides metadata, genre labels, image representations, and textual descriptors for 6,741 artists and 19,511 albums. Furthermore, since Music4All A+A is built on top of Music4All-Onion, it allows access to other multimodal data at the track level, including user--item interaction data. This renders Music4All A+A suitable for a broad range of MIR tasks, including multimodal music recommendation, at several levels of granularity. To showcase the use of Music4All A+A, we carry out experiments on multimodal genre classification of artists and albums, including an analysis in missing-modality scenarios, and a quantitative comparison with genre classification in the movie domain. Our experiments show that images are more informative for classifying the genres of artists and albums, and that several multimodal models for genre classification struggle in generalizing across domains. We provide the code to reproduce our experiments at https://github.com/hcai-mms/Music4All-A-A, the dataset is linked in the repository and provided open-source under a CC BY-NC-SA 4.0 license.
Abstract:Recent advancement in deep learning encouraged developing large automatic speech recognition (ASR) models that achieve promising results while ignoring computational and memory constraints. However, deploying such models on low resource devices is impractical despite of their favorable performance. Existing approaches (pruning, distillation, layer skip etc.) transform the large models into smaller ones at the cost of significant performance degradation or require prolonged training of smaller models for better performance. To address these issues, we introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model ensuring considerably better performance in limited number of epochs. Comprehensive experimentation on ASR benchmarks reveals the efficacy of our approach, achieving three-fold training speed-up and up to 12.54% word error rate improvement.
Abstract:We study the task of learning association between faces and voices, which is gaining interest in the multimodal community lately. These methods suffer from the deliberate crafting of negative mining procedures as well as the reliance on the distant margin parameter. These issues are addressed by learning a joint embedding space in which orthogonality constraints are applied to the fused embeddings of faces and voices. However, embedding spaces of faces and voices possess different characteristics and require spaces to be aligned before fusing them. To this end, we propose a method that accurately aligns the embedding spaces and fuses them with an enhanced gated fusion thereby improving the performance of face-voice association. Extensive experiments on the VoxCeleb dataset reveals the merits of the proposed approach.
Abstract:Most recommender systems adopt collaborative filtering (CF) and provide recommendations based on past collective interactions. Therefore, the performance of CF algorithms degrades when few or no interactions are available, a scenario referred to as cold-start. To address this issue, previous work relies on models leveraging both collaborative data and side information on the users or items. Similar to multimodal learning, these models aim at combining collaborative and content representations in a shared embedding space. In this work we propose a novel technique for multimodal recommendation, relying on a multimodal Single-Branch embedding network for Recommendation (SiBraR). Leveraging weight-sharing, SiBraR encodes interaction data as well as multimodal side information using the same single-branch embedding network on different modalities. This makes SiBraR effective in scenarios of missing modality, including cold start. Our extensive experiments on large-scale recommendation datasets from three different recommendation domains (music, movie, and e-commerce) and providing multimodal content information (audio, text, image, labels, and interactions) show that SiBraR significantly outperforms CF as well as state-of-the-art content-based RSs in cold-start scenarios, and is competitive in warm scenarios. We show that SiBraR's recommendations are accurate in missing modality scenarios, and that the model is able to map different modalities to the same region of the shared embedding space, hence reducing the modality gap.




Abstract:Multimodal networks have demonstrated remarkable performance improvements over their unimodal counterparts. Existing multimodal networks are designed in a multi-branch fashion that, due to the reliance on fusion strategies, exhibit deteriorated performance if one or more modalities are missing. In this work, we propose a modality invariant multimodal learning method, which is less susceptible to the impact of missing modalities. It consists of a single-branch network sharing weights across multiple modalities to learn inter-modality representations to maximize performance as well as robustness to missing modalities. Extensive experiments are performed on four challenging datasets including textual-visual (UPMC Food-101, Hateful Memes, Ferramenta) and audio-visual modalities (VoxCeleb1). Our proposed method achieves superior performance when all modalities are present as well as in the case of missing modalities during training or testing compared to the existing state-of-the-art methods.