Abstract:Being a cornerstone of temporal analysis, change detection has been playing a pivotal role in modern earth observation. Existing change detection methods rely on the Siamese encoder to individually extract temporal features followed by temporal fusion. Subsequently, these methods design sophisticated decoders to improve the change detection performance without taking into consideration the complexity of the model. These aforementioned issues intensify the overall computational cost as well as the network's complexity which is undesirable. Alternatively, few methods utilize the early fusion scheme to combine the temporal images. These methods prevent the extra overhead of Siamese encoder, however, they also rely on sophisticated decoders for better performance. In addition, these methods demonstrate inferior performance as compared to late fusion based methods. To bridge these gaps, we introduce encoder only change detection (EoCD) that is a simple and effective method for the change detection task. The proposed method performs the early fusion of the temporal data and replaces the decoder with a parameter-free multiscale feature fusion module thereby significantly reducing the overall complexity of the model. EoCD demonstrate the optimal balance between the change detection performance and the prediction speed across a variety of encoder architectures. Additionally, EoCD demonstrate that the performance of the model is predominantly dependent on the encoder network, making the decoder an additional component. Extensive experimentation on four challenging change detection datasets reveals the effectiveness of the proposed method.
Abstract:Edge devices operate in constrained and varying resource settings, requiring dynamic architectures that can adapt to limitations of the available resources. To meet such demands, layer dropping ($\mathcal{LD}$) approach is typically used to transform static models into dynamic ones by skipping parts of the network along with reducing overall computational complexity. However, existing $\mathcal{LD}$ methods greatly impact the dynamic model's performance for low and high dropping cases, deteriorating the performance-computation trade-off. To this end, we propose a distillation-based layer dropping (DLD) framework that effectively combines the capabilities of knowledge distillation and $\mathcal{LD}$ in an end-to-end fashion, thereby achieving state-of-the-art performance for dynamic speech networks. Comprehensive experimentation utilizing well-known speech recognition methods, including conformer and WavLM, on three public benchmarks demonstrates the effectiveness of our framework, reducing the word error rate by $9.32\%$ and $2.25\%$ for high and no dropping cases with $33.3\%$ reduction in training time.
Abstract:Curating foundation speech models for edge and IoT settings, where computational resources vary over time, requires dynamic architectures featuring adaptable reduction strategies. One emerging approach is layer dropping ($\mathcal{LD}$) which skips fraction of the layers of a backbone network during inference to reduce the computational load. This allows transforming static models into dynamic ones. However, existing approaches exhibit limitations either in the mode of selecting layers or by significantly modifying the neural architecture. To this end, we propose input-driven $\mathcal{LD}$ that employs the network's input features and a lightweight layer selecting network to determine the optimum combination of processing layers. Extensive experimentation on 4 speech and audio public benchmarks, using two different pre-trained foundation models, demonstrates the effectiveness of our approach, thoroughly outperforming random dropping and producing on-par (or better) results to early exit.
Abstract:Accurate microscopic medical image segmentation plays a crucial role in diagnosing various cancerous cells and identifying tumors. Driven by advancements in deep learning, convolutional neural networks (CNNs) and transformer-based models have been extensively studied to enhance receptive fields and improve medical image segmentation task. However, they often struggle to capture complex cellular and tissue structures in challenging scenarios such as background clutter and object overlap. Moreover, their reliance on the availability of large datasets for improved performance, along with the high computational cost, limit their practicality. To address these issues, we propose an efficient framework for the segmentation task, named InceptionMamba, which encodes multi-stage rich features and offers both performance and computational efficiency. Specifically, we exploit semantic cues to capture both low-frequency and high-frequency regions to enrich the multi-stage features to handle the blurred region boundaries (e.g., cell boundaries). These enriched features are input to a hybrid model that combines an Inception depth-wise convolution with a Mamba block, to maintain high efficiency and capture inherent variations in the scales and shapes of the regions of interest. These enriched features along with low-resolution features are fused to get the final segmentation mask. Our model achieves state-of-the-art performance on two challenging microscopic segmentation datasets (SegPC21 and GlaS) and two skin lesion segmentation datasets (ISIC2017 and ISIC2018), while reducing computational cost by about 5 times compared to the previous best performing method.
Abstract:We study the task of learning association between faces and voices, which is gaining interest in the multimodal community lately. These methods suffer from the deliberate crafting of negative mining procedures as well as the reliance on the distant margin parameter. These issues are addressed by learning a joint embedding space in which orthogonality constraints are applied to the fused embeddings of faces and voices. However, embedding spaces of faces and voices possess different characteristics and require spaces to be aligned before fusing them. To this end, we propose a method that accurately aligns the embedding spaces and fuses them with an enhanced gated fusion thereby improving the performance of face-voice association. Extensive experiments on the VoxCeleb dataset reveals the merits of the proposed approach.
Abstract:Recent advancement in deep learning encouraged developing large automatic speech recognition (ASR) models that achieve promising results while ignoring computational and memory constraints. However, deploying such models on low resource devices is impractical despite of their favorable performance. Existing approaches (pruning, distillation, layer skip etc.) transform the large models into smaller ones at the cost of significant performance degradation or require prolonged training of smaller models for better performance. To address these issues, we introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model ensuring considerably better performance in limited number of epochs. Comprehensive experimentation on ASR benchmarks reveals the efficacy of our approach, achieving three-fold training speed-up and up to 12.54% word error rate improvement.




Abstract:Machine translation is the process of translating text from one language to another. In this paper, Statistical Machine Translation is done on Assamese and English language by taking their respective parallel corpus. A statistical phrase based translation toolkit Moses is used here. To develop the language model and to align the words we used two another tools IRSTLM, GIZA respectively. BLEU score is used to check our translation system performance, how good it is. A difference in BLEU scores is obtained while translating sentences from Assamese to English and vice-versa. Since Indian languages are morphologically very rich hence translation is relatively harder from English to Assamese resulting in a low BLEU score. A statistical transliteration system is also introduced with our translation system to deal basically with proper nouns, OOV (out of vocabulary) words which are not present in our corpus.