Abstract:We study the task of learning association between faces and voices, which is gaining interest in the multimodal community lately. These methods suffer from the deliberate crafting of negative mining procedures as well as the reliance on the distant margin parameter. These issues are addressed by learning a joint embedding space in which orthogonality constraints are applied to the fused embeddings of faces and voices. However, embedding spaces of faces and voices possess different characteristics and require spaces to be aligned before fusing them. To this end, we propose a method that accurately aligns the embedding spaces and fuses them with an enhanced gated fusion thereby improving the performance of face-voice association. Extensive experiments on the VoxCeleb dataset reveals the merits of the proposed approach.
Abstract:Recent advancement in deep learning encouraged developing large automatic speech recognition (ASR) models that achieve promising results while ignoring computational and memory constraints. However, deploying such models on low resource devices is impractical despite of their favorable performance. Existing approaches (pruning, distillation, layer skip etc.) transform the large models into smaller ones at the cost of significant performance degradation or require prolonged training of smaller models for better performance. To address these issues, we introduce an efficacious two-step representation learning based approach capable of producing several small sized models from a single large model ensuring considerably better performance in limited number of epochs. Comprehensive experimentation on ASR benchmarks reveals the efficacy of our approach, achieving three-fold training speed-up and up to 12.54% word error rate improvement.
Abstract:Machine translation is the process of translating text from one language to another. In this paper, Statistical Machine Translation is done on Assamese and English language by taking their respective parallel corpus. A statistical phrase based translation toolkit Moses is used here. To develop the language model and to align the words we used two another tools IRSTLM, GIZA respectively. BLEU score is used to check our translation system performance, how good it is. A difference in BLEU scores is obtained while translating sentences from Assamese to English and vice-versa. Since Indian languages are morphologically very rich hence translation is relatively harder from English to Assamese resulting in a low BLEU score. A statistical transliteration system is also introduced with our translation system to deal basically with proper nouns, OOV (out of vocabulary) words which are not present in our corpus.