Topic:Fine Grained Image Classification
What is Fine Grained Image Classification? Fine grained image classification is a task in computer vision where the goal is to classify images into subcategories within a larger category. For example, classifying different species of birds or different types of flowers. This task is considered to be fine grained because it requires the model to distinguish between subtle differences in visual appearance and patterns, making it more challenging than regular image classification tasks.
Papers and Code
Oct 08, 2025
Abstract:Self-supervised learning (SSL) has advanced visual representation learning, but its value in chest radiography, a high-volume imaging modality with fine-grained findings, remains unclear. Meta's DINOv3 extends earlier SSL models through Gram-anchored self-distillation. Whether these design choices improve transfer learning for chest radiography has not been systematically tested. We benchmarked DINOv3 against DINOv2 and ImageNet initialization across seven datasets (n>814,000). Two representative backbones were evaluated: ViT-B/16 and ConvNeXt-B. Images were analyzed at 224x224, 512x512, and 1024x1024 pixels. We additionally assessed frozen features from a 7B model. The primary outcome was mean AUROC across labels. At 224x224, DINOv3 and DINOv2 achieved comparable performance on adult datasets. Increasing resolution to 512x512 yielded consistent improvements for DINOv3 over both DINOv2 and ImageNet. In contrast, results in pediatric cohort showed no differences across initializations. Across all settings, ConvNeXt-B outperformed ViT-B/16. Models using frozen DINOv3-7B features underperformed relative to fully finetuned 86-89M-parameter backbones, highlighting the importance of domain adaptation. Scaling to 1024x1024 did not further improve accuracy. Resolution-related gains were most evident for boundary-dependent and small focal abnormalities. In chest radiography, higher input resolution is critical for leveraging the benefits of modern self-supervised models. 512x512 pixels represent a practical upper limit where DINOv3-initialized ConvNeXt-B networks provide the strongest performance, while larger inputs offer minimal return on cost. Clinically, these findings support use of finetuned, mid-sized backbones at 512x512 for chest radiograph interpretation, with the greatest gains expected in detecting subtle or boundary-centered lesions relevant to emergency and critical care settings.
Via

Oct 06, 2025
Abstract:Deep learning has become increasingly important in remote sensing image classification due to its ability to extract semantic information from complex data. Classification tasks often include predefined label hierarchies that represent the semantic relationships among classes. However, these hierarchies are frequently overlooked, and most approaches focus only on fine-grained classification schemes. In this paper, we present a novel Semantics-Aware Hierarchical Consensus (SAHC) method for learning hierarchical features and relationships by integrating hierarchy-specific classification heads within a deep network architecture, each specialized in different degrees of class granularity. The proposed approach employs trainable hierarchy matrices, which guide the network through the learning of the hierarchical structure in a self-supervised manner. Furthermore, we introduce a hierarchical consensus mechanism to ensure consistent probability distributions across different hierarchical levels. This mechanism acts as a weighted ensemble being able to effectively leverage the inherent structure of the hierarchical classification task. The proposed SAHC method is evaluated on three benchmark datasets with different degrees of hierarchical complexity on different tasks, using distinct backbone architectures to effectively emphasize its adaptability. Experimental results show both the effectiveness of the proposed approach in guiding network learning and the robustness of the hierarchical consensus for remote sensing image classification tasks.
* 12 pages, 6 figures
Via

Oct 02, 2025
Abstract:Unsupervised adaptation of CLIP-based vision-language models (VLMs) for fine-grained image classification requires sensitivity to microscopic local cues. While CLIP exhibits strong zero-shot transfer, its reliance on coarse global features restricts its performance on fine-grained classification tasks. Prior efforts inject fine-grained knowledge by aligning large language model (LLM) descriptions with the CLIP $\texttt{[CLS]}$ token; however, this approach overlooks spatial precision. We propose $\textbf{microCLIP}$, a self-training framework that jointly refines CLIP's visual and textual representations using fine-grained cues. At its core is Saliency-Oriented Attention Pooling (SOAP) within a lightweight TokenFusion module, which builds a saliency-guided $\texttt{[FG]}$ token from patch embeddings and fuses it with the global $\texttt{[CLS]}$ token for coarse-fine alignment. To stabilize adaptation, we introduce a two-headed LLM-derived classifier: a frozen classifier that, via multi-view alignment, provides a stable text-based prior for pseudo-labeling, and a learnable classifier initialized from LLM descriptions and fine-tuned with TokenFusion. We further develop Dynamic Knowledge Aggregation, which convexly combines fixed LLM/CLIP priors with TokenFusion's evolving logits to iteratively refine pseudo-labels. Together, these components uncover latent fine-grained signals in CLIP, yielding a consistent $2.90\%$ average accuracy gain across 13 fine-grained benchmarks while requiring only light adaptation. Our code is available at https://github.com/sathiiii/microCLIP.
Via

Oct 01, 2025
Abstract:XAI gained considerable importance in recent years. Methods based on prototypical case-based reasoning have shown a promising improvement in explainability. However, these methods typically rely on additional post-hoc saliency techniques to explain the semantics of learned prototypes. Multiple critiques have been raised about the reliability and quality of such techniques. For this reason, we study the use of prominent image segmentation foundation models to improve the truthfulness of the mapping between embedding and input space. We aim to restrict the computation area of the saliency map to a predefined semantic image patch to reduce the uncertainty of such visualizations. To perceive the information of an entire image, we use the bounding box from each generated segmentation mask to crop the image. Each mask results in an individual input in our novel model architecture named ProtoMask. We conduct experiments on three popular fine-grained classification datasets with a wide set of metrics, providing a detailed overview on explainability characteristics. The comparison with other popular models demonstrates competitive performance and unique explainability features of our model. https://github.com/uos-sis/quanproto
Via

Oct 01, 2025
Abstract:Foundation models (FMs) are reshaping medical imaging, yet their application in echocardiography remains limited. While several echocardiography-specific FMs have recently been introduced, no standardized benchmark exists to evaluate them. Echocardiography poses unique challenges, including noisy acquisitions, high frame redundancy, and limited public datasets. Most existing solutions evaluate on private data, restricting comparability. To address this, we introduce CardioBench, a comprehensive benchmark for echocardiography FMs. CardioBench unifies eight publicly available datasets into a standardized suite spanning four regression and five classification tasks, covering functional, structural, diagnostic, and view recognition endpoints. We evaluate several leading FM, including cardiac-specific, biomedical, and general-purpose encoders, under consistent zero-shot, probing, and alignment protocols. Our results highlight complementary strengths across model families: temporal modeling is critical for functional regression, retrieval provides robustness under distribution shift, and domain-specific text encoders capture physiologically meaningful axes. General-purpose encoders transfer strongly and often close the gap with probing, but struggle with fine-grained distinctions like view classification and subtle pathology recognition. By releasing preprocessing, splits, and public evaluation pipelines, CardioBench establishes a reproducible reference point and offers actionable insights to guide the design of future echocardiography foundation models.
Via

Sep 26, 2025
Abstract:Few-shot image classification remains challenging due to the limited availability of labeled examples. Recent approaches have explored generating synthetic training data using text-to-image diffusion models, but often require extensive model fine-tuning or external information sources. We present a novel training-free approach, called DIPSY, that leverages IP-Adapter for image-to-image translation to generate highly discriminative synthetic images using only the available few-shot examples. DIPSY introduces three key innovations: (1) an extended classifier-free guidance scheme that enables independent control over positive and negative image conditioning; (2) a class similarity-based sampling strategy that identifies effective contrastive examples; and (3) a simple yet effective pipeline that requires no model fine-tuning or external captioning and filtering. Experiments across ten benchmark datasets demonstrate that our approach achieves state-of-the-art or comparable performance, while eliminating the need for generative model adaptation or reliance on external tools for caption generation and image filtering. Our results highlight the effectiveness of leveraging dual image prompting with positive-negative guidance for generating class-discriminative features, particularly for fine-grained classification tasks.
Via

Sep 26, 2025
Abstract:The proliferation of disinformation, particularly in multimodal contexts combining text and images, presents a significant challenge across digital platforms. This study investigates the potential of large multimodal models (LMMs) in detecting and mitigating false information. We propose to approach multimodal disinformation detection by leveraging the advanced capabilities of the GPT-4o model. Our contributions include: (1) the development of an optimized prompt incorporating advanced prompt engineering techniques to ensure precise and consistent evaluations; (2) the implementation of a structured framework for multimodal analysis, including a preprocessing methodology for images and text to comply with the model's token limitations; (3) the definition of six specific evaluation criteria that enable a fine-grained classification of content, complemented by a self-assessment mechanism based on confidence levels; (4) a comprehensive performance analysis of the model across multiple heterogeneous datasets Gossipcop, Politifact, Fakeddit, MMFakeBench, and AMMEBA highlighting GPT-4o's strengths and limitations in disinformation detection; (5) an investigation of prediction variability through repeated testing, evaluating the stability and reliability of the model's classifications; and (6) the introduction of confidence-level and variability-based evaluation methods. These contributions provide a robust and reproducible methodological framework for automated multimodal disinformation analysis.
* 9 pages
Via

Sep 18, 2025
Abstract:Image classification has traditionally relied on parameter-intensive model training, requiring large-scale annotated datasets and extensive fine tuning to achieve competitive performance. While recent vision language models (VLMs) alleviate some of these constraints, they remain limited by their reliance on single pass representations, often failing to capture complementary aspects of visual content. In this paper, we introduce Multi Agent based Reasoning for Image Classification (MARIC), a multi agent framework that reformulates image classification as a collaborative reasoning process. MARIC first utilizes an Outliner Agent to analyze the global theme of the image and generate targeted prompts. Based on these prompts, three Aspect Agents extract fine grained descriptions along distinct visual dimensions. Finally, a Reasoning Agent synthesizes these complementary outputs through integrated reflection step, producing a unified representation for classification. By explicitly decomposing the task into multiple perspectives and encouraging reflective synthesis, MARIC mitigates the shortcomings of both parameter-heavy training and monolithic VLM reasoning. Experiments on 4 diverse image classification benchmark datasets demonstrate that MARIC significantly outperforms baselines, highlighting the effectiveness of multi-agent visual reasoning for robust and interpretable image classification.
* Preprint
Via

Sep 19, 2025
Abstract:Fine-grained visual classification (FGVC) requires distinguishing between visually similar categories through subtle, localized features - a task that remains challenging due to high intra-class variability and limited inter-class differences. Existing part-based methods often rely on complex localization networks that learn mappings from pixel to sample space, requiring a deep understanding of image content while limiting feature utility for downstream tasks. In addition, sampled points frequently suffer from high spatial redundancy, making it difficult to quantify the optimal number of required parts. Inspired by human saccadic vision, we propose a two-stage process that first extracts peripheral features (coarse view) and generates a sample map, from which fixation patches are sampled and encoded in parallel using a weight-shared encoder. We employ contextualized selective attention to weigh the impact of each fixation patch before fusing peripheral and focus representations. To prevent spatial collapse - a common issue in part-based methods - we utilize non-maximum suppression during fixation sampling to eliminate redundancy. Comprehensive evaluation on standard FGVC benchmarks (CUB-200-2011, NABirds, Food-101 and Stanford-Dogs) and challenging insect datasets (EU-Moths, Ecuador-Moths and AMI-Moths) demonstrates that our method achieves comparable performance to state-of-the-art approaches while consistently outperforming our baseline encoder.
Via

Sep 16, 2025
Abstract:The integration of event cameras and spiking neural networks holds great promise for energy-efficient visual processing. However, the limited availability of event data and the sparse nature of DVS outputs pose challenges for effective training. Although some prior work has attempted to transfer semantic knowledge from RGB datasets to DVS, they often overlook the significant distribution gap between the two modalities. In this paper, we propose Time-step Mixup knowledge transfer (TMKT), a novel fine-grained mixing strategy that exploits the asynchronous nature of SNNs by interpolating RGB and DVS inputs at various time-steps. To enable label mixing in cross-modal scenarios, we further introduce modality-aware auxiliary learning objectives. These objectives support the time-step mixup process and enhance the model's ability to discriminate effectively across different modalities. Our approach enables smoother knowledge transfer, alleviates modality shift during training, and achieves superior performance in spiking image classification tasks. Extensive experiments demonstrate the effectiveness of our method across multiple datasets. The code will be released after the double-blind review process.
Via
