Abstract:Fairness is a critical component of Trustworthy AI. In this paper, we focus on Machine Learning (ML) and the performance of model predictions when dealing with skin color. Unlike other sensitive attributes, the nature of skin color differs significantly. In computer vision, skin color is represented as tensor data rather than categorical values or single numerical points. However, much of the research on fairness across sensitive groups has focused on categorical features such as gender and race. This paper introduces a new technique for evaluating fairness in ML for image classification tasks, specifically without the use of annotation. To address the limitations of prior work, we handle tensor data, like skin color, without classifying it rigidly. Instead, we convert it into probability distributions and apply statistical distance measures. This novel approach allows us to capture fine-grained nuances in fairness both within and across what would traditionally be considered distinct groups. Additionally, we propose an innovative training method to mitigate the latent biases present in conventional skin tone categorization. This method leverages color distance estimates calculated through Bayesian regression with polynomial functions, ensuring a more nuanced and equitable treatment of skin color in ML models.
Abstract:The detrimental effects of air pollutants on human health have prompted increasing concerns regarding indoor air quality (IAQ). The emergence of digital health interventions and citizen science initiatives has provided new avenues for raising awareness, improving IAQ, and promoting behavioural changes. The Technology Acceptance Model (TAM) offers a theoretical framework to understand user acceptance and adoption of IAQ technology. This paper presents a case study using the COM-B model and Internet of Things (IoT) technology to design a human-centred digital visualisation platform, leading to behavioural changes and improved IAQ. The study also investigates users' acceptance and adoption of the technology, focusing on their experiences, expectations, and the impact on IAQ. Integrating IAQ sensing, digital health-related interventions, citizen science, and the TAM model offers opportunities to address IAQ challenges, enhance public health, and foster sustainable indoor environments. The analytical results show that factors such as human behaviour, indoor activities, and awareness play crucial roles in shaping IAQ.