Abstract:Federated learning (FL) is an emerging collaborative learning paradigm that aims to protect data privacy. Unfortunately, recent works show FL algorithms are vulnerable to the serious data reconstruction attacks. However, existing works lack a theoretical foundation on to what extent the devices' data can be reconstructed and the effectiveness of these attacks cannot be compared fairly due to their unstable performance. To address this deficiency, we propose a theoretical framework to understand data reconstruction attacks to FL. Our framework involves bounding the data reconstruction error and an attack's error bound reflects its inherent attack effectiveness. Under the framework, we can theoretically compare the effectiveness of existing attacks. For instance, our results on multiple datasets validate that the iDLG attack inherently outperforms the DLG attack.
Abstract:Differentially private federated learning (DP-FL) is a promising technique for collaborative model training while ensuring provable privacy for clients. However, optimizing the tradeoff between privacy and accuracy remains a critical challenge. To our best knowledge, we propose the first DP-FL framework (namely UDP-FL), which universally harmonizes any randomization mechanism (e.g., an optimal one) with the Gaussian Moments Accountant (viz. DP-SGD) to significantly boost accuracy and convergence. Specifically, UDP-FL demonstrates enhanced model performance by mitigating the reliance on Gaussian noise. The key mediator variable in this transformation is the R\'enyi Differential Privacy notion, which is carefully used to harmonize privacy budgets. We also propose an innovative method to theoretically analyze the convergence for DP-FL (including our UDP-FL ) based on mode connectivity analysis. Moreover, we evaluate our UDP-FL through extensive experiments benchmarked against state-of-the-art (SOTA) methods, demonstrating superior performance on both privacy guarantees and model performance. Notably, UDP-FL exhibits substantial resilience against different inference attacks, indicating a significant advance in safeguarding sensitive data in federated learning environments.
Abstract:Graph neural network (GNN) explainers identify the important subgraph that ensures the prediction for a given graph. Until now, almost all GNN explainers are based on association, which is prone to spurious correlations. We propose {\name}, a GNN causal explainer via causal inference. Our explainer is based on the observation that a graph often consists of a causal underlying subgraph. {\name} includes three main steps: 1) It builds causal structure and the corresponding structural causal model (SCM) for a graph, which enables the cause-effect calculation among nodes. 2) Directly calculating the cause-effect in real-world graphs is computationally challenging. It is then enlightened by the recent neural causal model (NCM), a special type of SCM that is trainable, and design customized NCMs for GNNs. By training these GNN NCMs, the cause-effect can be easily calculated. 3) It uncovers the subgraph that causally explains the GNN predictions via the optimized GNN-NCMs. Evaluation results on multiple synthetic and real-world graphs validate that {\name} significantly outperforms existing GNN explainers in exact groundtruth explanation identification
Abstract:Explainable Graph Neural Network (GNN) has emerged recently to foster the trust of using GNNs. Existing GNN explainers are developed from various perspectives to enhance the explanation performance. We take the first step to study GNN explainers under adversarial attack--We found that an adversary slightly perturbing graph structure can ensure GNN model makes correct predictions, but the GNN explainer yields a drastically different explanation on the perturbed graph. Specifically, we first formulate the attack problem under a practical threat model (i.e., the adversary has limited knowledge about the GNN explainer and a restricted perturbation budget). We then design two methods (i.e., one is loss-based and the other is deduction-based) to realize the attack. We evaluate our attacks on various GNN explainers and the results show these explainers are fragile.
Abstract:Graph Neural Networks (GNNs) have gained popularity in numerous domains, yet they are vulnerable to backdoor attacks that can compromise their performance and ethical application. The detection of these attacks is crucial for maintaining the reliability and security of GNN classification tasks, but effective detection techniques are lacking. Following an initial investigation, we observed that while graph-level explanations can offer limited insights, their effectiveness in detecting backdoor triggers is inconsistent and incomplete. To bridge this gap, we extract and transform secondary outputs of GNN explanation mechanisms, designing seven novel metrics that more effectively detect backdoor attacks. Additionally, we develop an adaptive attack to rigorously evaluate our approach. We test our method on multiple benchmark datasets and examine its efficacy against various attack models. Our results show that our method can achieve high detection performance, marking a significant advancement in safeguarding GNNs against backdoor attacks.
Abstract:Machine learning (ML) is vulnerable to inference (e.g., membership inference, property inference, and data reconstruction) attacks that aim to infer the private information of training data or dataset. Existing defenses are only designed for one specific type of attack and sacrifice significant utility or are soon broken by adaptive attacks. We address these limitations by proposing an information-theoretic defense framework, called Inf2Guard, against the three major types of inference attacks. Our framework, inspired by the success of representation learning, posits that learning shared representations not only saves time/costs but also benefits numerous downstream tasks. Generally, Inf2Guard involves two mutual information objectives, for privacy protection and utility preservation, respectively. Inf2Guard exhibits many merits: it facilitates the design of customized objectives against the specific inference attack; it provides a general defense framework which can treat certain existing defenses as special cases; and importantly, it aids in deriving theoretical results, e.g., inherent utility-privacy tradeoff and guaranteed privacy leakage. Extensive evaluations validate the effectiveness of Inf2Guard for learning privacy-preserving representations against inference attacks and demonstrate the superiority over the baselines.
Abstract:Large language models (LLMs) have achieved remarkable success due to their exceptional generative capabilities. Despite their success, they also have inherent limitations such as a lack of up-to-date knowledge and hallucination. Retrieval-Augmented Generation (RAG) is a state-of-the-art technique to mitigate those limitations. In particular, given a question, RAG retrieves relevant knowledge from a knowledge database to augment the input of the LLM. For instance, the retrieved knowledge could be a set of top-k texts that are most semantically similar to the given question when the knowledge database contains millions of texts collected from Wikipedia. As a result, the LLM could utilize the retrieved knowledge as the context to generate an answer for the given question. Existing studies mainly focus on improving the accuracy or efficiency of RAG, leaving its security largely unexplored. We aim to bridge the gap in this work. Particularly, we propose PoisonedRAG , a set of knowledge poisoning attacks to RAG, where an attacker could inject a few poisoned texts into the knowledge database such that the LLM generates an attacker-chosen target answer for an attacker-chosen target question. We formulate knowledge poisoning attacks as an optimization problem, whose solution is a set of poisoned texts. Depending on the background knowledge (e.g., black-box and white-box settings) of an attacker on the RAG, we propose two solutions to solve the optimization problem, respectively. Our results on multiple benchmark datasets and LLMs show our attacks could achieve 90% attack success rates when injecting 5 poisoned texts for each target question into a database with millions of texts. We also evaluate recent defenses and our results show they are insufficient to defend against our attacks, highlighting the need for new defenses.
Abstract:The language models, especially the basic text classification models, have been shown to be susceptible to textual adversarial attacks such as synonym substitution and word insertion attacks. To defend against such attacks, a growing body of research has been devoted to improving the model robustness. However, providing provable robustness guarantees instead of empirical robustness is still widely unexplored. In this paper, we propose Text-CRS, a generalized certified robustness framework for natural language processing (NLP) based on randomized smoothing. To our best knowledge, existing certified schemes for NLP can only certify the robustness against $\ell_0$ perturbations in synonym substitution attacks. Representing each word-level adversarial operation (i.e., synonym substitution, word reordering, insertion, and deletion) as a combination of permutation and embedding transformation, we propose novel smoothing theorems to derive robustness bounds in both permutation and embedding space against such adversarial operations. To further improve certified accuracy and radius, we consider the numerical relationships between discrete words and select proper noise distributions for the randomized smoothing. Finally, we conduct substantial experiments on multiple language models and datasets. Text-CRS can address all four different word-level adversarial operations and achieve a significant accuracy improvement. We also provide the first benchmark on certified accuracy and radius of four word-level operations, besides outperforming the state-of-the-art certification against synonym substitution attacks.
Abstract:Image segmentation is an important problem in many safety-critical applications. Recent studies show that modern image segmentation models are vulnerable to adversarial perturbations, while existing attack methods mainly follow the idea of attacking image classification models. We argue that image segmentation and classification have inherent differences, and design an attack framework specially for image segmentation models. Our attack framework is inspired by certified radius, which was originally used by defenders to defend against adversarial perturbations to classification models. We are the first, from the attacker perspective, to leverage the properties of certified radius and propose a certified radius guided attack framework against image segmentation models. Specifically, we first adapt randomized smoothing, the state-of-the-art certification method for classification models, to derive the pixel's certified radius. We then focus more on disrupting pixels with relatively smaller certified radii and design a pixel-wise certified radius guided loss, when plugged into any existing white-box attack, yields our certified radius-guided white-box attack. Next, we propose the first black-box attack to image segmentation models via bandit. We design a novel gradient estimator, based on bandit feedback, which is query-efficient and provably unbiased and stable. We use this gradient estimator to design a projected bandit gradient descent (PBGD) attack, as well as a certified radius-guided PBGD (CR-PBGD) attack. We prove our PBGD and CR-PBGD attacks can achieve asymptotically optimal attack performance with an optimal rate. We evaluate our certified-radius guided white-box and black-box attacks on multiple modern image segmentation models and datasets. Our results validate the effectiveness of our certified radius-guided attack framework.
Abstract:Integrated Gradients (IG) as well as its variants are well-known techniques for interpreting the decisions of deep neural networks. While IG-based approaches attain state-of-the-art performance, they often integrate noise into their explanation saliency maps, which reduce their interpretability. To minimize the noise, we examine the source of the noise analytically and propose a new approach to reduce the explanation noise based on our analytical findings. We propose the Important Direction Gradient Integration (IDGI) framework, which can be easily incorporated into any IG-based method that uses the Reimann Integration for integrated gradient computation. Extensive experiments with three IG-based methods show that IDGI improves them drastically on numerous interpretability metrics.