Few-shot image segmentation is the process of segmenting images with limited labeled data.
Motivated by the success of the Segment Anything Model (SAM) in promptable segmentation, recent studies leverage SAM to develop training-free solutions for few-shot segmentation, which aims to predict object masks in the target image based on a few reference exemplars. These SAM-based methods typically rely on point matching between reference and target images and use the matched dense points as prompts for mask prediction. However, we observe that dense points perform poorly in Cross-Domain Few-Shot Segmentation (CD-FSS), where target images are from medical or satellite domains. We attribute this issue to large domain shifts that disrupt the point-image interactions learned by SAM, and find that point density plays a crucial role under such conditions. To address this challenge, we propose Conditional Point Sparsification (CPS), a training-free approach that adaptively guides SAM interactions for cross-domain images based on reference exemplars. Leveraging ground-truth masks, the reference images provide reliable guidance for adaptively sparsifying dense matched points, enabling more accurate segmentation results. Extensive experiments demonstrate that CPS outperforms existing training-free SAM-based methods across diverse CD-FSS datasets.
We present Neural Memory Object (NeMO), a novel object-centric representation that can be used to detect, segment and estimate the 6DoF pose of objects unseen during training using RGB images. Our method consists of an encoder that requires only a few RGB template views depicting an object to generate a sparse object-like point cloud using a learned UDF containing semantic and geometric information. Next, a decoder takes the object encoding together with a query image to generate a variety of dense predictions. Through extensive experiments, we show that our method can be used for few-shot object perception without requiring any camera-specific parameters or retraining on target data. Our proposed concept of outsourcing object information in a NeMO and using a single network for multiple perception tasks enhances interaction with novel objects, improving scalability and efficiency by enabling quick object onboarding without retraining or extensive pre-processing. We report competitive and state-of-the-art results on various datasets and perception tasks of the BOP benchmark, demonstrating the versatility of our approach. https://github.com/DLR-RM/nemo
During benchmarking, the state-of-the-art model for glacier calving front delineation achieves near-human performance. However, when applied in a real-world setting at a novel study site, its delineation accuracy is insufficient for calving front products intended for further scientific analyses. This site represents an out-of-distribution domain for a model trained solely on the benchmark dataset. By employing a few-shot domain adaptation strategy, incorporating spatial static prior knowledge, and including summer reference images in the input time series, the delineation error is reduced from 1131.6 m to 68.7 m without any architectural modifications. These methodological advancements establish a framework for applying deep learning-based calving front segmentation to novel study sites, enabling calving front monitoring on a global scale.
Widely adopted medical image segmentation methods, although efficient, are primarily deterministic and remain poorly amenable to natural language prompts. Thus, they lack the capability to estimate multiple proposals, human interaction, and cross-modality adaptation. Recently, text-to-image diffusion models have shown potential to bridge the gap. However, training them from scratch requires a large dataset-a limitation for medical image segmentation. Furthermore, they are often limited to binary segmentation and cannot be conditioned on a natural language prompt. To this end, we propose a novel framework called ProGiDiff that leverages existing image generation models for medical image segmentation purposes. Specifically, we propose a ControlNet-style conditioning mechanism with a custom encoder, suitable for image conditioning, to steer a pre-trained diffusion model to output segmentation masks. It naturally extends to a multi-class setting simply by prompting the target organ. Our experiment on organ segmentation from CT images demonstrates strong performance compared to previous methods and could greatly benefit from an expert-in-the-loop setting to leverage multiple proposals. Importantly, we demonstrate that the learned conditioning mechanism can be easily transferred through low-rank, few-shot adaptation to segment MR images.
Crack detection is critical for concrete infrastructure safety, but real-world cracks often appear in low-light environments like tunnels and bridge undersides, degrading computer vision segmentation accuracy. Pixel-level annotation of low-light crack images is extremely time-consuming, yet most deep learning methods require large, well-illuminated datasets. We propose a dual-branch prototype learning network integrating Retinex theory with few-shot learning for low-light crack segmentation. Retinex-based reflectance components guide illumination-invariant global representation learning, while metric learning reduces dependence on large annotated datasets. We introduce a cross-similarity prior mask generation module that computes high-dimensional similarities between query and support features to capture crack location and structure, and a multi-scale feature enhancement module that fuses multi-scale features with the prior mask to alleviate spatial inconsistency. Extensive experiments on multiple benchmarks demonstrate consistent state-of-the-art performance under low-light conditions. Code: https://github.com/YulunGuo/CrackFSS.
Vision-Language Models (VLMs), particularly CLIP, have revolutionized anomaly detection by enabling zero-shot and few-shot defect identification without extensive labeled datasets. By learning aligned representations of images and text, VLMs facilitate anomaly classification and segmentation through natural language descriptions of normal and abnormal states, eliminating traditional requirements for task-specific training or defect examples. This project presents a comprehensive analysis of VLM-based approaches for anomaly classification (AC) and anomaly segmentation (AS). We systematically investigate key architectural paradigms including sliding window-based dense feature extraction (WinCLIP), multi-stage feature alignment with learnable projections (AprilLab framework), and compositional prompt ensemble strategies. Our analysis evaluates these methods across critical dimensions: feature extraction mechanisms, text-visual alignment strategies, prompt engineering techniques, zero-shot versus few-shot trade-offs, computational efficiency, and cross-domain generalization. Through rigorous experimentation on benchmarks such as MVTec AD and VisA, we compare classification accuracy, segmentation precision, and inference efficiency. The primary contribution is a foundational understanding of how and why VLMs succeed in anomaly detection, synthesizing practical insights for method selection and identifying current limitations. This work aims to facilitate informed adoption of VLM-based methods in industrial quality control and guide future research directions.
Few-Shot Anomaly Detection (FSAD) has emerged as a critical paradigm for identifying irregularities using scarce normal references. While recent methods have integrated textual semantics to complement visual data, they predominantly rely on features pre-trained on natural scenes, thereby neglecting the granular, domain-specific semantics essential for industrial inspection. Furthermore, prevalent fusion strategies often resort to superficial concatenation, failing to address the inherent semantic misalignment between visual and textual modalities, which compromises robustness against cross-modal interference. To bridge these gaps, this study proposes VTFusion, a vision-text multimodal fusion framework tailored for FSAD. The framework rests on two core designs. First, adaptive feature extractors for both image and text modalities are introduced to learn task-specific representations, bridging the domain gap between pre-trained models and industrial data; this is further augmented by generating diverse synthetic anomalies to enhance feature discriminability. Second, a dedicated multimodal prediction fusion module is developed, comprising a fusion block that facilitates rich cross-modal information exchange and a segmentation network that generates refined pixel-level anomaly maps under multimodal guidance. VTFusion significantly advances FSAD performance, achieving image-level AUROCs of 96.8% and 86.2% in the 2-shot scenario on the MVTec AD and VisA datasets, respectively. Furthermore, VTFusion achieves an AUPRO of 93.5% on a real-world dataset of industrial automotive plastic parts introduced in this paper, further demonstrating its practical applicability in demanding industrial scenarios.
The rise of vision language models (VLMs) paves a new path for radio frequency (RF) perception. Rather than designing task-specific neural receivers, we ask if VLMs can learn to recognize modulations when RF waveforms are expressed as images. In this work, we find that they can. In specific, in this paper, we introduce a practical pipeline for converting complex IQ streams into visually interpretable inputs, hence, enabling general-purpose VLMs to classify modulation schemes without changing their underlying design. Building on this, we construct an RF visual question answering (VQA) benchmark framework that covers 57 classes across major families of analog/digital modulations with three complementary image modes, namely, (i) short \emph{time-series} IQ segments represented as real/imaginary traces, (ii) magnitude-only \emph{spectrograms}, and (iii) \emph{joint} representations that pair spectrograms with a synchronized time-series waveforms. We design uniform zero-shot and few-shot prompts for both class-level and family-level evaluations. Our finetuned VLMs with these images achieve competitive accuracy of $90\%$ compared to $10\%$ of the base models. Furthermore, the fine-tuned VLMs show robust performance under noise and demonstrate high generalization performance to unseen modulation types, without relying on RF-domain priors or specialized architectures. The obtained results show that combining RF-to-image conversion with promptable VLMs provides a scalable and practical foundation for RF-aware AI systems in future 6G networks.
Deep learning-based automatic medical image segmentation plays a critical role in clinical diagnosis and treatment planning but remains challenging in few-shot scenarios due to the scarcity of annotated training data. Recently, self-supervised foundation models such as DINOv3, which were trained on large natural image datasets, have shown strong potential for dense feature extraction that can help with the few-shot learning challenge. Yet, their direct application to medical images is hindered by domain differences. In this work, we propose DINO-AugSeg, a novel framework that leverages DINOv3 features to address the few-shot medical image segmentation challenge. Specifically, we introduce WT-Aug, a wavelet-based feature-level augmentation module that enriches the diversity of DINOv3-extracted features by perturbing frequency components, and CG-Fuse, a contextual information-guided fusion module that exploits cross-attention to integrate semantic-rich low-resolution features with spatially detailed high-resolution features. Extensive experiments on six public benchmarks spanning five imaging modalities, including MRI, CT, ultrasound, endoscopy, and dermoscopy, demonstrate that DINO-AugSeg consistently outperforms existing methods under limited-sample conditions. The results highlight the effectiveness of incorporating wavelet-domain augmentation and contextual fusion for robust feature representation, suggesting DINO-AugSeg as a promising direction for advancing few-shot medical image segmentation. Code and data will be made available on https://github.com/apple1986/DINO-AugSeg.
Few-shot semantic segmentation of time-series remote sensing images remains a critical challenge, particularly in regions where labeled data is scarce or costly to obtain. While state-of-the-art models perform well under full supervision, their performance degrades significantly under limited labeling, limiting their real-world applicability. In this work, we propose SAM-Aug, a new annotation-efficient framework that leverages the geometry-aware segmentation capability of the Segment Anything Model (SAM) to improve few-shot land cover mapping. Our approach constructs cloud-free composite images from temporal sequences and applies SAM in a fully unsupervised manner to generate geometry-aware mask priors. These priors are then integrated into training through a proposed loss function called RegionSmoothLoss, which enforces prediction consistency within each SAM-derived region across temporal frames, effectively regularizing the model to respect semantically coherent structures. Extensive experiments on the PASTIS-R benchmark under a 5 percent labeled setting demonstrate the effectiveness and robustness of SAM-Aug. Averaged over three random seeds (42, 2025, 4090), our method achieves a mean test mIoU of 36.21 percent, outperforming the state-of-the-art baseline by +2.33 percentage points, a relative improvement of 6.89 percent. Notably, on the most favorable split (seed=42), SAM-Aug reaches a test mIoU of 40.28 percent, representing an 11.2 percent relative gain with no additional labeled data. The consistent improvement across all seeds confirms the generalization power of leveraging foundation model priors under annotation scarcity. Our results highlight that vision models like SAM can serve as useful regularizers in few-shot remote sensing learning, offering a scalable and plug-and-play solution for land cover monitoring without requiring manual annotations or model fine-tuning.