Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Ahmed Imtiaz Humayun, Randall Balestriero, Richard Baraniuk

Grokking, or delayed generalization, is a phenomenon where generalization in a deep neural network (DNN) occurs long after achieving near zero training error. Previous studies have reported the occurrence of grokking in specific controlled settings, such as DNNs initialized with large-norm parameters or transformers trained on algorithmic datasets. We demonstrate that grokking is actually much more widespread and materializes in a wide range of practical settings, such as training of a convolutional neural network (CNN) on CIFAR10 or a Resnet on Imagenette. We introduce the new concept of delayed robustness, whereby a DNN groks adversarial examples and becomes robust, long after interpolation and/or generalization. We develop an analytical explanation for the emergence of both delayed generalization and delayed robustness based on a new measure of the local complexity of a DNN's input-output mapping. Our local complexity measures the density of the so-called 'linear regions' (aka, spline partition regions) that tile the DNN input space, and serves as a utile progress measure for training. We provide the first evidence that for classification problems, the linear regions undergo a phase transition during training whereafter they migrate away from the training samples (making the DNN mapping smoother there) and towards the decision boundary (making the DNN mapping less smooth there). Grokking occurs post phase transition as a robust partition of the input space emerges thanks to the linearization of the DNN mapping around the training points. Website: https://bit.ly/grok-adversarial

Via

Randall Balestriero, Yann LeCun

Input space reconstruction is an attractive representation learning paradigm. Despite interpretability of the reconstruction and generation, we identify a misalignment between learning by reconstruction, and learning for perception. We show that the former allocates a model's capacity towards a subspace of the data explaining the observed variance--a subspace with uninformative features for the latter. For example, the supervised TinyImagenet task with images projected onto the top subspace explaining 90\% of the pixel variance can be solved with 45\% test accuracy. Using the bottom subspace instead, accounting for only 20\% of the pixel variance, reaches 55\% test accuracy. The features for perception being learned last explains the need for long training time, e.g., with Masked Autoencoders. Learning by denoising is a popular strategy to alleviate that misalignment. We prove that while some noise strategies such as masking are indeed beneficial, others such as additive Gaussian noise are not. Yet, even in the case of masking, we find that the benefits vary as a function of the mask's shape, ratio, and the considered dataset. While tuning the noise strategy without knowledge of the perception task seems challenging, we provide first clues on how to detect if a noise strategy is never beneficial regardless of the perception task.

Via

Randall Balestriero, Yann LeCun

One fruitful formulation of Deep Networks (DNs) enabling their theoretical study and providing practical guidelines to practitioners relies on Piecewise Affine Splines. In that realm, a DN's input-mapping is expressed as per-region affine mapping where those regions are implicitly determined by the model's architecture and form a partition of their input space. That partition -- which is involved in all the results spanned from this line of research -- has so far only been computed on $2/3$-dimensional slices of the DN's input space or estimated by random sampling. In this paper, we provide the first parallel algorithm that does exact enumeration of the DN's partition regions. The proposed algorithm enables one to finally assess the closeness of the commonly employed approximations methods, e.g. based on random sampling of the DN input space. One of our key finding is that if one is only interested in regions with ``large'' volume, then uniform sampling of the space is highly efficient, but that if one is also interested in discovering the ``small'' regions of the partition, then uniform sampling is exponentially costly with the DN's input space dimension. On the other hand, our proposed method has complexity scaling linearly with input dimension and the number of regions.

Via

Aarash Feizi, Randall Balestriero, Adriana Romero-Soriano, Reihaneh Rabbany

We propose Guided Positive Sampling Self-Supervised Learning (GPS-SSL), a general method to inject a priori knowledge into Self-Supervised Learning (SSL) positive samples selection. Current SSL methods leverage Data-Augmentations (DA) for generating positive samples and incorporate prior knowledge - an incorrect, or too weak DA will drastically reduce the quality of the learned representation. GPS-SSL proposes instead to design a metric space where Euclidean distances become a meaningful proxy for semantic relationship. In that space, it is now possible to generate positive samples from nearest neighbor sampling. Any prior knowledge can now be embedded into that metric space independently from the employed DA. From its simplicity, GPS-SSL is applicable to any SSL method, e.g. SimCLR or BYOL. A key benefit of GPS-SSL is in reducing the pressure in tailoring strong DAs. For example GPS-SSL reaches 85.58% on Cifar10 with weak DA while the baseline only reaches 37.51%. We therefore move a step forward towards the goal of making SSL less reliant on DA. We also show that even when using strong DAs, GPS-SSL outperforms the baselines on under-studied domains. We evaluate GPS-SSL along with multiple baseline SSL methods on numerous downstream datasets from different domains when the models use strong or minimal data augmentations. We hope that GPS-SSL will open new avenues in studying how to inject a priori knowledge into SSL in a principled manner.

Via

Randall Balestriero, Romain Cosentino, Sarath Shekkizhar

Large Language Models~(LLMs) drive current AI breakthroughs despite very little being known about their internal representations, e.g., how to extract a few informative features to solve various downstream tasks. To provide a practical and principled answer, we propose to characterize LLMs from a geometric perspective. We obtain in closed form (i) the intrinsic dimension in which the Multi-Head Attention embeddings are constrained to exist and (ii) the partition and per-region affine mappings of the per-layer feedforward networks. Our results are informative, do not rely on approximations, and are actionable. First, we show that, motivated by our geometric interpretation, we can bypass Llama$2$'s RLHF by controlling its embedding's intrinsic dimension through informed prompt manipulation. Second, we derive $7$ interpretable spline features that can be extracted from any (pre-trained) LLM layer, providing a rich abstract representation of their inputs. Those features alone ($224$ for Mistral-7B and Llama$2$-7B) are sufficient to help solve toxicity detection, infer the domain of the prompt, and even tackle the Jigsaw challenge, which aims at characterizing the type of toxicity of various prompts. Our results demonstrate how, even in large-scale regimes, exact theoretical results can answer practical questions in language models. Code: \url{https://github.com/RandallBalestriero/SplineLLM}.

Via

Ahmed Imtiaz Humayun, Randall Balestriero, Richard Baraniuk

The study of Deep Network (DN) training dynamics has largely focused on the evolution of the loss function, evaluated on or around train and test set data points. In fact, many DN phenomenon were first introduced in literature with that respect, e.g., double descent, grokking. In this study, we look at the training dynamics of the input space partition or linear regions formed by continuous piecewise affine DNs, e.g., networks with (leaky)ReLU nonlinearities. First, we present a novel statistic that encompasses the local complexity (LC) of the DN based on the concentration of linear regions inside arbitrary dimensional neighborhoods around data points. We observe that during training, the LC around data points undergoes a number of phases, starting with a decreasing trend after initialization, followed by an ascent and ending with a final descending trend. Using exact visualization methods, we come across the perplexing observation that during the final LC descent phase of training, linear regions migrate away from training and test samples towards the decision boundary, making the DN input-output nearly linear everywhere else. We also observe that the different LC phases are closely related to the memorization and generalization performance of the DN, especially during grokking.

Via

Ali Siahkoohi, Rudy Morel, Randall Balestriero, Erwan Allys, Grégory Sainton, Taichi Kawamura, Maarten V. de Hoop

Unsupervised source separation involves unraveling an unknown set of source signals recorded through a mixing operator, with limited prior knowledge about the sources, and only access to a dataset of signal mixtures. This problem is inherently ill-posed and is further challenged by the variety of time-scales exhibited by sources in time series data. Existing methods typically rely on a preselected window size that limits their capacity to handle multi-scale sources. To address this issue, instead of operating in the time domain, we propose an unsupervised multi-scale clustering and source separation framework by leveraging wavelet scattering covariances that provide a low-dimensional representation of stochastic processes, capable of distinguishing between different non-Gaussian stochastic processes. Nested within this representation space, we develop a factorial Gaussian-mixture variational autoencoder that is trained to (1) probabilistically cluster sources at different time-scales and (2) independently sample scattering covariance representations associated with each cluster. Using samples from each cluster as prior information, we formulate source separation as an optimization problem in the wavelet scattering covariance representation space, resulting in separated sources in the time domain. When applied to seismic data recorded during the NASA InSight mission on Mars, our multi-scale nested approach proves to be a powerful tool for discriminating between sources varying greatly in time-scale, e.g., minute-long transient one-sided pulses (known as ``glitches'') and structured ambient noises resulting from atmospheric activities that typically last for tens of minutes. These results provide an opportunity to conduct further investigations into the isolated sources related to atmospheric-surface interactions, thermal relaxations, and other complex phenomena.

Via

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, Micah Goldblum

Self-supervised learning, dubbed the dark matter of intelligence, is a promising path to advance machine learning. Yet, much like cooking, training SSL methods is a delicate art with a high barrier to entry. While many components are familiar, successfully training a SSL method involves a dizzying set of choices from the pretext tasks to training hyper-parameters. Our goal is to lower the barrier to entry into SSL research by laying the foundations and latest SSL recipes in the style of a cookbook. We hope to empower the curious researcher to navigate the terrain of methods, understand the role of the various knobs, and gain the know-how required to explore how delicious SSL can be.

Via

Florian Bordes, Samuel Lavoie, Randall Balestriero, Nicolas Ballas, Pascal Vincent

Self-Supervised Learning (SSL) models rely on a pretext task to learn representations. Because this pretext task differs from the downstream tasks used to evaluate the performance of these models, there is an inherent misalignment or pretraining bias. A commonly used trick in SSL, shown to make deep networks more robust to such bias, is the addition of a small projector (usually a 2 or 3 layer multi-layer perceptron) on top of a backbone network during training. In contrast to previous work that studied the impact of the projector architecture, we here focus on a simpler, yet overlooked lever to control the information in the backbone representation. We show that merely changing its dimensionality -- by changing only the size of the backbone's very last block -- is a remarkably effective technique to mitigate the pretraining bias. It significantly improves downstream transfer performance for both Self-Supervised and Supervised pretrained models.

Via

Vivien Cabannes, Leon Bottou, Yann Lecun, Randall Balestriero

Self-Supervised Learning (SSL) has emerged as the solution of choice to learn transferable representations from unlabeled data. However, SSL requires to build samples that are known to be semantically akin, i.e. positive views. Requiring such knowledge is the main limitation of SSL and is often tackled by ad-hoc strategies e.g. applying known data-augmentations to the same input. In this work, we generalize and formalize this principle through Positive Active Learning (PAL) where an oracle queries semantic relationships between samples. PAL achieves three main objectives. First, it unveils a theoretically grounded learning framework beyond SSL, that can be extended to tackle supervised and semi-supervised learning depending on the employed oracle. Second, it provides a consistent algorithm to embed a priori knowledge, e.g. some observed labels, into any SSL losses without any change in the training pipeline. Third, it provides a proper active learning framework yielding low-cost solutions to annotate datasets, arguably bringing the gap between theory and practice of active learning that is based on simple-to-answer-by-non-experts queries of semantic relationships between inputs.

Via