Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
With the ever-increasing volume of visual data, the efficient and lossless transmission, along with its subsequent interpretation and understanding, has become a critical bottleneck in modern information systems. The emerged codebook-based solution utilize a globally shared codebook to quantize and dequantize each token, controlling the bpp by adjusting the number of tokens or the codebook size. However, for facial images, which are rich in attributes, such global codebook strategies overlook both the category-specific correlations within images and the semantic differences among tokens, resulting in suboptimal performance, especially at low bpp. Motivated by these observations, we propose a Switchable Token-Specific Codebook Quantization for face image compression, which learns distinct codebook groups for different image categories and assigns an independent codebook to each token. By recording the codebook group to which each token belongs with a small number of bits, our method can reduce the loss incurred when decreasing the size of each codebook group. This enables a larger total number of codebooks under a lower overall bpp, thereby enhancing the expressive capability and improving reconstruction performance. Owing to its generalizable design, our method can be integrated into any existing codebook-based representation learning approach and has demonstrated its effectiveness on face recognition datasets, achieving an average accuracy of 93.51% for reconstructed images at 0.05 bpp.
Compared to 2D data, the scale of point cloud data in different domains available for training, is quite limited. Researchers have been trying to combine these data of different domains for masked autoencoder (MAE) pre-training to leverage such a data scarcity issue. However, the prior knowledge learned from mixed domains may not align well with the downstream 3D point cloud analysis tasks, leading to degraded performance. To address such an issue, we propose the Domain-Adaptive Point Cloud Masked Autoencoder (DAP-MAE), an MAE pre-training method, to adaptively integrate the knowledge of cross-domain datasets for general point cloud analysis. In DAP-MAE, we design a heterogeneous domain adapter that utilizes an adaptation mode during pre-training, enabling the model to comprehensively learn information from point clouds across different domains, while employing a fusion mode in the fine-tuning to enhance point cloud features. Meanwhile, DAP-MAE incorporates a domain feature generator to guide the adaptation of point cloud features to various downstream tasks. With only one pre-training, DAP-MAE achieves excellent performance across four different point cloud analysis tasks, reaching 95.18% in object classification on ScanObjectNN and 88.45% in facial expression recognition on Bosphorus.
We present Empathic Prompting, a novel framework for multimodal human-AI interaction that enriches Large Language Model (LLM) conversations with implicit non-verbal context. The system integrates a commercial facial expression recognition service to capture users' emotional cues and embeds them as contextual signals during prompting. Unlike traditional multimodal interfaces, empathic prompting requires no explicit user control; instead, it unobtrusively augments textual input with affective information for conversational and smoothness alignment. The architecture is modular and scalable, allowing integration of additional non-verbal modules. We describe the system design, implemented through a locally deployed DeepSeek instance, and report a preliminary service and usability evaluation (N=5). Results show consistent integration of non-verbal input into coherent LLM outputs, with participants highlighting conversational fluidity. Beyond this proof of concept, empathic prompting points to applications in chatbot-mediated communication, particularly in domains like healthcare or education, where users' emotional signals are critical yet often opaque in verbal exchanges.
Facial micro-expressions, characterized by their subtle and brief nature, are valuable indicators of genuine emotions. Despite their significance in psychology, security, and behavioral analysis, micro-expression recognition remains challenging due to the difficulty of capturing subtle facial movements. Optical flow has been widely employed as an input modality for this task due to its effectiveness. However, most existing methods compute optical flow only between the onset and apex frames, thereby overlooking essential motion information in the apex-to-offset phase. To address this limitation, we first introduce a comprehensive motion representation, termed Magnitude-Modulated Combined Optical Flow (MM-COF), which integrates motion dynamics from both micro-expression phases into a unified descriptor suitable for direct use in recognition networks. Building upon this principle, we then propose FMANet, a novel end-to-end neural network architecture that internalizes the dual-phase analysis and magnitude modulation into learnable modules. This allows the network to adaptively fuse motion cues and focus on salient facial regions for classification. Experimental evaluations on the MMEW, SMIC, CASME-II, and SAMM datasets, widely recognized as standard benchmarks, demonstrate that our proposed MM-COF representation and FMANet outperforms existing methods, underscoring the potential of a learnable, dual-phase framework in advancing micro-expression recognition.
Facial expression classification remains a challenging task due to the high dimensionality and inherent complexity of facial image data. This paper presents Hy-Facial, a hybrid feature extraction framework that integrates both deep learning and traditional image processing techniques, complemented by a systematic investigation of dimensionality reduction strategies. The proposed method fuses deep features extracted from the Visual Geometry Group 19-layer network (VGG19) with handcrafted local descriptors and the scale-invariant feature transform (SIFT) and Oriented FAST and Rotated BRIEF (ORB) algorithms, to obtain rich and diverse image representations. To mitigate feature redundancy and reduce computational complexity, we conduct a comprehensive evaluation of dimensionality reduction techniques and feature extraction. Among these, UMAP is identified as the most effective, preserving both local and global structures of the high-dimensional feature space. The Hy-Facial pipeline integrated VGG19, SIFT, and ORB for feature extraction, followed by K-means clustering and UMAP for dimensionality reduction, resulting in a classification accuracy of 83. 3\% in the facial expression recognition (FER) dataset. These findings underscore the pivotal role of dimensionality reduction not only as a pre-processing step but as an essential component in improving feature quality and overall classification performance.
An efficient and data-driven encoding scheme is proposed to enhance the performance of variational quantum classifiers. This encoding is specially designed for complex datasets like images and seeks to help the classification task by producing input states that form well-separated clusters in the Hilbert space according to their classification labels. The encoding circuit is trained using a triplet loss function inspired by classical facial recognition algorithms, and class separability is measured via average trace distances between the encoded density matrices. Benchmark tests performed on various binary classification tasks on MNIST and MedMNIST datasets demonstrate considerable improvement over amplitude encoding with the same VQC structure while requiring a much lower circuit depth.




Digital beautification through social media filters has become increasingly popular, raising concerns about the reliability of facial images and videos and the effectiveness of automated face analysis. This issue is particularly critical for digital manipulation detectors, systems aiming at distinguishing between genuine and manipulated data, especially in cases involving deepfakes and morphing attacks designed to deceive humans and automated facial recognition. This study examines whether beauty filters impact the performance of deepfake and morphing attack detectors. We perform a comprehensive analysis, evaluating multiple state-of-the-art detectors on benchmark datasets before and after applying various smoothing filters. Our findings reveal performance degradation, highlighting vulnerabilities introduced by facial enhancements and underscoring the need for robust detection models resilient to such alterations.




Dynamic facial expression recognition (DFER) faces significant challenges due to long-tailed category distributions and complexity of spatio-temporal feature modeling. While existing deep learning-based methods have improved DFER performance, they often fail to address these issues, resulting in severe model induction bias. To overcome these limitations, we propose a novel multi-instance learning framework called MICACL, which integrates spatio-temporal dependency modeling and long-tailed contrastive learning optimization. Specifically, we design the Graph-Enhanced Instance Interaction Module (GEIIM) to capture intricate spatio-temporal between adjacent instances relationships through adaptive adjacency matrices and multiscale convolutions. To enhance instance-level feature aggregation, we develop the Weighted Instance Aggregation Network (WIAN), which dynamically assigns weights based on instance importance. Furthermore, we introduce a Multiscale Category-aware Contrastive Learning (MCCL) strategy to balance training between major and minor categories. Extensive experiments on in-the-wild datasets (i.e., DFEW and FERV39k) demonstrate that MICACL achieves state-of-the-art performance with superior robustness and generalization.
Video-based AI systems are increasingly adopted in safety-critical domains such as autonomous driving and healthcare. However, interpreting their decisions remains challenging due to the inherent spatiotemporal complexity of video data and the opacity of deep learning models. Existing explanation techniques often suffer from limited temporal coherence, insufficient robustness, and a lack of actionable causal insights. Current counterfactual explanation methods typically do not incorporate guidance from the target model, reducing semantic fidelity and practical utility. We introduce Latent Diffusion for Video Counterfactual Explanations (LD-ViCE), a novel framework designed to explain the behavior of video-based AI models. Compared to previous approaches, LD-ViCE reduces the computational costs of generating explanations by operating in latent space using a state-of-the-art diffusion model, while producing realistic and interpretable counterfactuals through an additional refinement step. Our experiments demonstrate the effectiveness of LD-ViCE across three diverse video datasets, including EchoNet-Dynamic (cardiac ultrasound), FERV39k (facial expression), and Something-Something V2 (action recognition). LD-ViCE outperforms a recent state-of-the-art method, achieving an increase in R2 score of up to 68% while reducing inference time by half. Qualitative analysis confirms that LD-ViCE generates semantically meaningful and temporally coherent explanations, offering valuable insights into the target model behavior. LD-ViCE represents a valuable step toward the trustworthy deployment of AI in safety-critical domains.
Fake images in selfie banking are increasingly becoming a threat. Previously, it was just Photoshop, but now deep learning technologies enable us to create highly realistic fake identities, which fraudsters exploit to bypass biometric systems such as facial recognition in online banking. This paper explores the use of an already established forensic recognition system, previously used for picture camera localization, in deepfake detection.