Abstract:Promptable segmentation models such as SAM have established a powerful paradigm, enabling strong generalization to unseen objects and domains with minimal user input, including points, bounding boxes, and text prompts. Among these, bounding boxes stand out as particularly effective, often outperforming points while significantly reducing annotation costs. However, current training and evaluation protocols typically rely on synthetic prompts generated through simple heuristics, offering limited insight into real-world robustness. In this paper, we investigate the robustness of promptable segmentation models to natural variations in bounding box prompts. First, we conduct a controlled user study and collect thousands of real bounding box annotations. Our analysis reveals substantial variability in segmentation quality across users for the same model and instance, indicating that SAM-like models are highly sensitive to natural prompt noise. Then, since exhaustive testing of all possible user inputs is computationally prohibitive, we reformulate robustness evaluation as a white-box optimization problem over the bounding box prompt space. We introduce BREPS, a method for generating adversarial bounding boxes that minimize or maximize segmentation error while adhering to naturalness constraints. Finally, we benchmark state-of-the-art models across 10 datasets, spanning everyday scenes to medical imaging. Code - https://github.com/emb-ai/BREPS.
Abstract:We present NoReGeo, a novel benchmark designed to evaluate the intrinsic geometric understanding of large language models (LLMs) without relying on reasoning or algebraic computation. Unlike existing benchmarks that primarily assess models' proficiency in reasoning-based geometry-where solutions are derived using algebraic methods-NoReGeo focuses on evaluating whether LLMs can inherently encode spatial relationships and recognize geometric properties directly. Our benchmark comprises 2,500 trivial geometric problems spanning 25 categories, each carefully crafted to be solvable purely through native geometric understanding, assuming known object locations. We assess a range of state-of-the-art models on NoReGeo, including frontier models like GPT-4, observing that even the most advanced systems achieve an overall maximum of 65% accuracy in binary classification tasks. Further, our ablation experiments demonstrate that such geometric understanding does not emerge through fine-tuning alone, indicating that effective training for geometric comprehension requires a specialized approach from the outset. Our findings highlight a significant gap in current LLMs' ability to natively grasp geometric concepts, providing a foundation for future research toward models with true geometric cognition.
Abstract:The conceptual design phase in architecture and urban planning, particularly building massing, is complex and heavily reliant on designer intuition and manual effort. To address this, we propose an automated framework for generating building massing based on functional requirements and site context. A primary obstacle to such data-driven methods has been the lack of suitable datasets. Consequently, we introduce the CoMa-20K dataset, a comprehensive collection that includes detailed massing geometries, associated economical and programmatic data, and visual representations of the development site within its existing urban context. We benchmark this dataset by formulating massing generation as a conditional task for Vision-Language Models (VLMs), evaluating both fine-tuned and large zero-shot models. Our experiments reveal the inherent complexity of the task while demonstrating the potential of VLMs to produce context-sensitive massing options. The dataset and analysis establish a foundational benchmark and highlight significant opportunities for future research in data-driven architectural design.




Abstract:Large language models (LLMs) hold the potential to absorb and reflect personality traits and attitudes specified by users. In our study, we investigated this potential using robust psychometric measures. We adapted the most studied test in psychological literature, namely Minnesota Multiphasic Personality Inventory (MMPI) and examined LLMs' behavior to identify traits. To asses the sensitivity of LLMs' prompts and psychological biases we created personality-oriented prompts, crafting a detailed set of personas that vary in trait intensity. This enables us to measure how well LLMs follow these roles. Our study introduces MindShift, a benchmark for evaluating LLMs' psychological adaptability. The results highlight a consistent improvement in LLMs' role perception, attributed to advancements in training datasets and alignment techniques. Additionally, we observe significant differences in responses to psychometric assessments across different model types and families, suggesting variability in their ability to emulate human-like personality traits. MindShift prompts and code for LLM evaluation will be publicly available.
Abstract:Most existing robotic manipulation benchmarks focus on simplified tabletop scenarios, typically involving a stationary robotic arm interacting with various objects on a flat surface. To address this limitation, we introduce RoboBenchMart, a more challenging and realistic benchmark designed for dark store environments, where robots must perform complex manipulation tasks with diverse grocery items. This setting presents significant challenges, including dense object clutter and varied spatial configurations -- with items positioned at different heights, depths, and in close proximity. By targeting the retail domain, our benchmark addresses a setting with strong potential for near-term automation impact. We demonstrate that current state-of-the-art generalist models struggle to solve even common retail tasks. To support further research, we release the RoboBenchMart suite, which includes a procedural store layout generator, a trajectory generation pipeline, evaluation tools and fine-tuned baseline models.




Abstract:We present a lightweight yet effective pipeline for training vision-language models to solve math problems by rendering LaTeX encoded equations into images and pairing them with structured chain-of-thought prompts. This simple text-to-vision augmentation enables compact multimodal architectures to achieve state-of-the-art reasoning accuracy. Through systematic ablations, we find that rendering fidelity and prompt design are the primary drivers of performance. Despite its simplicity, our approach consistently matches or surpasses both open-source and proprietary math-focused vision-language solvers on widely used benchmarks, while preserving broad general-domain competence - showing gains on tasks such as MMMU, ChartQA, and DocVQA of up to 20%.
Abstract:While Retrieval-Augmented Generation (RAG) methods commonly draw information from unstructured documents, the emerging paradigm of GraphRAG aims to leverage structured data such as knowledge graphs. Most existing GraphRAG efforts focus on Resource Description Framework (RDF) knowledge graphs, relying on triple representations and SPARQL queries. However, the potential of Cypher and Labeled Property Graph (LPG) databases to serve as scalable and effective reasoning engines within GraphRAG pipelines remains underexplored in current research literature. To fill this gap, we propose Multi-Agent GraphRAG, a modular LLM agentic system for text-to-Cypher query generation serving as a natural language interface to LPG-based graph data. Our proof-of-concept system features an LLM-based workflow for automated Cypher queries generation and execution, using Memgraph as the graph database backend. Iterative content-aware correction and normalization, reinforced by an aggregated feedback loop, ensures both semantic and syntactic refinement of generated queries. We evaluate our system on the CypherBench graph dataset covering several general domains with diverse types of queries. In addition, we demonstrate performance of the proposed workflow on a property graph derived from the IFC (Industry Foundation Classes) data, representing a digital twin of a building. This highlights how such an approach can bridge AI with real-world applications at scale, enabling industrial digital automation use cases.
Abstract:Vision Language Action (VLA) models are widely used in Embodied AI, enabling robots to interpret and execute language instructions. However, their robustness to natural language variability in real-world scenarios has not been thoroughly investigated. In this work, we present a novel systematic study of the robustness of state-of-the-art VLA models under linguistic perturbations. Specifically, we evaluate model performance under two types of instruction noise: (1) human-generated paraphrasing and (2) the addition of irrelevant context. We further categorize irrelevant contexts into two groups according to their length and their semantic and lexical proximity to robot commands. In this study, we observe consistent performance degradation as context size expands. We also demonstrate that the model can exhibit relative robustness to random context, with a performance drop within 10%, while semantically and lexically similar context of the same length can trigger a quality decline of around 50%. Human paraphrases of instructions lead to a drop of nearly 20%. To mitigate this, we propose an LLM-based filtering framework that extracts core commands from noisy inputs. Incorporating our filtering step allows models to recover up to 98.5% of their original performance under noisy conditions.
Abstract:The recently proposed Large Concept Model (LCM) generates text by predicting a sequence of sentence-level embeddings and training with either mean-squared error or diffusion objectives. We present SONAR-LLM, a decoder-only transformer that "thinks" in the same continuous SONAR embedding space, yet is supervised through token-level cross-entropy propagated via the frozen SONAR decoder. This hybrid objective retains the semantic abstraction of LCM while eliminating its diffusion sampler and restoring a likelihood-based training signal. Across model sizes from 39M to 1.3B parameters, SONAR-LLM attains competitive generation quality. We report scaling trends, ablations, benchmark results, and release the complete training code and all pretrained checkpoints to foster reproducibility and future research.
Abstract:Despite significant progress in text-to-image diffusion models, achieving precise spatial control over generated outputs remains challenging. ControlNet addresses this by introducing an auxiliary conditioning module, while ControlNet++ further refines alignment through a cycle consistency loss applied only to the final denoising steps. However, this approach neglects intermediate generation stages, limiting its effectiveness. We propose InnerControl, a training strategy that enforces spatial consistency across all diffusion steps. Our method trains lightweight convolutional probes to reconstruct input control signals (e.g., edges, depth) from intermediate UNet features at every denoising step. These probes efficiently extract signals even from highly noisy latents, enabling pseudo ground truth controls for training. By minimizing the discrepancy between predicted and target conditions throughout the entire diffusion process, our alignment loss improves both control fidelity and generation quality. Combined with established techniques like ControlNet++, InnerControl achieves state-of-the-art performance across diverse conditioning methods (e.g., edges, depth).