Abstract:Surveillance systems play a critical role in security and reconnaissance, but their performance is often compromised by low-quality images and videos, leading to reduced accuracy in face recognition. Additionally, existing AI-based facial analysis models suffer from biases related to skin tone variations and partially occluded faces, further limiting their effectiveness in diverse real-world scenarios. These challenges are the results of data limitations and imbalances, where available training datasets lack sufficient diversity, resulting in unfair and unreliable facial recognition performance. To address these issues, we propose a data-driven platform that enhances surveillance capabilities by generating synthetic training data tailored to compensate for dataset biases. Our approach leverages deep learning-based facial attribute manipulation and reconstruction using autoencoders and Generative Adversarial Networks (GANs) to create diverse and high-quality facial datasets. Additionally, our system integrates an image enhancement module, improving the clarity of low-resolution or occluded faces in surveillance footage. We evaluate our approach using the CelebA dataset, demonstrating that the proposed platform enhances both training data diversity and model fairness. This work contributes to reducing bias in AI-based facial analysis and improving surveillance accuracy in challenging environments, leading to fairer and more reliable security applications.
Abstract:In recent years, there has been an increasing interest in the use of artificial intelligence (AI) and extended reality (XR) in the beauty industry. In this paper, we present an AI-assisted skin care recommendation system integrated into an XR platform. The system uses a convolutional neural network (CNN) to analyse an individual's skin type and recommend personalised skin care products in an immersive and interactive manner. Our methodology involves collecting data from individuals through a questionnaire and conducting skin analysis using a provided facial image in an immersive environment. This data is then used to train the CNN model, which recognises the skin type and existing issues and allows the recommendation engine to suggest personalised skin care products. We evaluate our system in terms of the accuracy of the CNN model, which achieves an average score of 93% in correctly classifying existing skin issues. Being integrated into an XR system, this approach has the potential to significantly enhance the beauty industry by providing immersive and engaging experiences to users, leading to more efficient and consistent skincare routines.
Abstract:The objective of augmented reality (AR) is to add digital content to natural images and videos to create an interactive experience between the user and the environment. Scene analysis and object recognition play a crucial role in AR, as they must be performed quickly and accurately. In this study, a new approach is proposed that involves using oriented bounding boxes with a detection and recognition deep network to improve performance and processing time. The approach is evaluated using two datasets: a real image dataset (DOTA dataset) commonly used for computer vision tasks, and a synthetic dataset that simulates different environmental, lighting, and acquisition conditions. The focus of the evaluation is on small objects, which are difficult to detect and recognise. The results indicate that the proposed approach tends to produce better Average Precision and greater accuracy for small objects in most of the tested conditions.