Topic:Facial Action Unit Detection
What is Facial Action Unit Detection? Facial action unit detection is the process of identifying and categorizing facial expressions based on facial muscle movements.
Papers and Code
Jun 05, 2025
Abstract:With the increasing prevalence and deployment of Emotion AI-powered facial affect analysis (FAA) tools, concerns about the trustworthiness of these systems have become more prominent. This first workshop on "Towards Trustworthy Facial Affect Analysis: Advancing Insights of Fairness, Explainability, and Safety (TrustFAA)" aims to bring together researchers who are investigating different challenges in relation to trustworthiness-such as interpretability, uncertainty, biases, and privacy-across various facial affect analysis tasks, including macro/ micro-expression recognition, facial action unit detection, other corresponding applications such as pain and depression detection, as well as human-robot interaction and collaboration. In alignment with FG2025's emphasis on ethics, as demonstrated by the inclusion of an Ethical Impact Statement requirement for this year's submissions, this workshop supports FG2025's efforts by encouraging research, discussion and dialogue on trustworthy FAA.
Via

May 30, 2025
Abstract:The Facial Action Coding System (FACS) has been used by numerous studies to investigate the links between facial behavior and mental health. The laborious and costly process of FACS coding has motivated the development of machine learning frameworks for Action Unit (AU) detection. Despite intense efforts spanning three decades, the detection accuracy for many AUs is considered to be below the threshold needed for behavioral research. Also, many AUs are excluded altogether, making it impossible to fulfill the ultimate goal of FACS-the representation of any facial expression in its entirety. This paper considers an alternative approach. Instead of creating automated tools that mimic FACS experts, we propose to use a new coding system that mimics the key properties of FACS. Specifically, we construct a data-driven coding system called the Facial Basis, which contains units that correspond to localized and interpretable 3D facial movements, and overcomes three structural limitations of automated FACS coding. First, the proposed method is completely unsupervised, bypassing costly, laborious and variable manual annotation. Second, Facial Basis reconstructs all observable movement, rather than relying on a limited repertoire of recognizable movements (as in automated FACS). Finally, the Facial Basis units are additive, whereas AUs may fail detection when they appear in a non-additive combination. The proposed method outperforms the most frequently used AU detector in predicting autism diagnosis from in-person and remote conversations, highlighting the importance of encoding facial behavior comprehensively. To our knowledge, Facial Basis is the first alternative to FACS for deconstructing facial expressions in videos into localized movements. We provide an open source implementation of the method at github.com/sariyanidi/FacialBasis.
* To appear in the Proceedings of the 19th IEEE International
Conference on Automatic Face and Gesture Recognition (2025)
Via

May 26, 2025
Abstract:Understanding pain-related facial behaviors is essential for digital healthcare in terms of effective monitoring, assisted diagnostics, and treatment planning, particularly for patients unable to communicate verbally. Existing data-driven methods of detecting pain from facial expressions are limited due to interpretability and severity quantification. To this end, we propose GraphAU-Pain, leveraging a graph-based framework to model facial Action Units (AUs) and their interrelationships for pain intensity estimation. AUs are represented as graph nodes, with co-occurrence relationships as edges, enabling a more expressive depiction of pain-related facial behaviors. By utilizing a relational graph neural network, our framework offers improved interpretability and significant performance gains. Experiments conducted on the publicly available UNBC dataset demonstrate the effectiveness of the GraphAU-Pain, achieving an F1-score of 66.21% and accuracy of 87.61% in pain intensity estimation.
Via

May 25, 2025
Abstract:Understanding the emotional impact of videos is crucial for applications in content creation, advertising, and Human-Computer Interaction (HCI). Traditional affective computing methods rely on self-reported emotions, facial expression analysis, and biosensing data, yet they often overlook the role of visual saliency -- the naturally attention-grabbing regions within a video. In this study, we utilize deep learning to introduce a novel saliency-based approach to emotion prediction by extracting two key features: saliency area and number of salient regions. Using the HD2S saliency model and OpenFace facial action unit analysis, we examine the relationship between video saliency and viewer emotions. Our findings reveal three key insights: (1) Videos with multiple salient regions tend to elicit high-valence, low-arousal emotions, (2) Videos with a single dominant salient region are more likely to induce low-valence, high-arousal responses, and (3) Self-reported emotions often misalign with facial expression-based emotion detection, suggesting limitations in subjective reporting. By leveraging saliency-driven insights, this work provides a computationally efficient and interpretable alternative for emotion modeling, with implications for content creation, personalized media experiences, and affective computing research.
* Accepted for publication at IBPRIA 2025 Conference in Coimbra,
Portugal
Via

May 13, 2025
Abstract:The rapid evolution of generative AI has increased the threat of realistic audio-visual deepfakes, demanding robust detection methods. Existing solutions primarily address unimodal (audio or visual) forgeries but struggle with multimodal manipulations due to inadequate handling of heterogeneous modality features and poor generalization across datasets. To this end, we propose a novel framework called FauForensics by introducing biologically invariant facial action units (FAUs), which is a quantitative descriptor of facial muscle activity linked to emotion physiology. It serves as forgery-resistant representations that reduce domain dependency while capturing subtle dynamics often disrupted in synthetic content. Besides, instead of comparing entire video clips as in prior works, our method computes fine-grained frame-wise audiovisual similarities via a dedicated fusion module augmented with learnable cross-modal queries. It dynamically aligns temporal-spatial lip-audio relationships while mitigating multi-modal feature heterogeneity issues. Experiments on FakeAVCeleb and LAV-DF show state-of-the-art (SOTA) performance and superior cross-dataset generalizability with up to an average of 4.83\% than existing methods.
Via

May 06, 2025
Abstract:The Equine Facial Action Coding System (EquiFACS) enables the systematic annotation of facial movements through distinct Action Units (AUs). It serves as a crucial tool for assessing affective states in horses by identifying subtle facial expressions associated with discomfort. However, the field of horse affective state assessment is constrained by the scarcity of annotated data, as manually labelling facial AUs is both time-consuming and costly. To address this challenge, automated annotation systems are essential for leveraging existing datasets and improving affective states detection tools. In this work, we study different methods for specific ear AU detection and localization from horse videos. We leverage past works on deep learning-based video feature extraction combined with recurrent neural networks for the video classification task, as well as a classic optical flow based approach. We achieve 87.5% classification accuracy of ear movement presence on a public horse video dataset, demonstrating the potential of our approach. We discuss future directions to develop these systems, with the aim of bridging the gap between automated AU detection and practical applications in equine welfare and veterinary diagnostics. Our code will be made publicly available at https://github.com/jmalves5/read-my-ears.
Via

Apr 09, 2025
Abstract:The human face plays a central role in social communication, necessitating the use of performant computer vision tools for human-centered applications. We propose Face-LLaVA, a multimodal large language model for face-centered, in-context learning, including facial expression and attribute recognition. Additionally, Face-LLaVA is able to generate natural language descriptions that can be used for reasoning. Leveraging existing visual databases, we first developed FaceInstruct-1M, a face-centered database for instruction tuning MLLMs for face processing. We then developed a novel face-specific visual encoder powered by Face-Region Guided Cross-Attention that integrates face geometry with local visual features. We evaluated the proposed method across nine different datasets and five different face processing tasks, including facial expression recognition, action unit detection, facial attribute detection, age estimation and deepfake detection. Face-LLaVA achieves superior results compared to existing open-source MLLMs and competitive performance compared to commercial solutions. Our model output also receives a higher reasoning rating by GPT under a zero-shot setting across all the tasks. Both our dataset and model wil be released at https://face-llava.github.io to support future advancements in social AI and foundational vision-language research.
Via

Mar 30, 2025
Abstract:Facial Action Units (AUs) detection is a cornerstone of objective facial expression analysis and a critical focus in affective computing. Despite its importance, AU detection faces significant challenges, such as the high cost of AU annotation and the limited availability of datasets. These constraints often lead to overfitting in existing methods, resulting in substantial performance degradation when applied across diverse datasets. Addressing these issues is essential for improving the reliability and generalizability of AU detection methods. Moreover, many current approaches leverage Transformers for their effectiveness in long-context modeling, but they are hindered by the quadratic complexity of self-attention. Recently, Test-Time Training (TTT) layers have emerged as a promising solution for long-sequence modeling. Additionally, TTT applies self-supervised learning for iterative updates during both training and inference, offering a potential pathway to mitigate the generalization challenges inherent in AU detection tasks. In this paper, we propose a novel vision backbone tailored for AU detection, incorporating bidirectional TTT blocks, named AU-TTT. Our approach introduces TTT Linear to the AU detection task and optimizes image scanning mechanisms for enhanced performance. Additionally, we design an AU-specific Region of Interest (RoI) scanning mechanism to capture fine-grained facial features critical for AU detection. Experimental results demonstrate that our method achieves competitive performance in both within-domain and cross-domain scenarios.
Via

Apr 12, 2025
Abstract:Facial micro-expressions are spontaneous, brief and subtle facial motions that unveil the underlying, suppressed emotions. Detecting Action Units (AUs) in micro-expressions is crucial because it yields a finer representation of facial motions than categorical emotions, effectively resolving the ambiguity among different expressions. One of the difficulties in micro-expression analysis is that facial motions are subtle and brief, thereby increasing the difficulty in correlating facial motion features to AU occurrence. To bridge the subtlety issue, flow-related features and motion magnification are a few common approaches as they can yield descriptive motion changes and increased motion amplitude respectively. While motion magnification can amplify the motion changes, it also accounts for illumination changes and projection errors during the amplification process, thereby creating motion artefacts that confuse the model to learn inauthentic magnified motion features. The problem is further aggravated in the context of a more complicated task where more AU classes are analyzed in cross-database settings. To address this issue, we propose InfuseNet, a layer-wise unitary feature infusion framework that leverages motion context to constrain the Action Unit (AU) learning within an informative facial movement region, thereby alleviating the influence of magnification artefacts. On top of that, we propose leveraging magnified latent features instead of reconstructing magnified samples to limit the distortion and artefacts caused by the projection inaccuracy in the motion reconstruction process. Via alleviating the magnification artefacts, InfuseNet has surpassed the state-of-the-art results in the CD6ME protocol. Further quantitative studies have also demonstrated the efficacy of motion artefacts alleviation.
Via

Apr 14, 2025
Abstract:Multimodal foundation models have significantly improved feature representation by integrating information from multiple modalities, making them highly suitable for a broader set of applications. However, the exploration of multimodal facial representation for understanding perception has been limited. Understanding and analyzing facial states, such as Action Units (AUs) and emotions, require a comprehensive and robust framework that bridges visual and linguistic modalities. In this paper, we present a comprehensive pipeline for multimodal facial state analysis. First, we compile a new Multimodal Face Dataset (MFA) by generating detailed multilevel language descriptions of face, incorporating Action Unit (AU) and emotion descriptions, by leveraging GPT-4o. Second, we introduce a novel Multilevel Multimodal Face Foundation model (MF^2) tailored for Action Unit (AU) and emotion recognition. Our model incorporates comprehensive visual feature modeling at both local and global levels of face image, enhancing its ability to represent detailed facial appearances. This design aligns visual representations with structured AU and emotion descriptions, ensuring effective cross-modal integration. Third, we develop a Decoupled Fine-Tuning Network (DFN) that efficiently adapts MF^2 across various tasks and datasets. This approach not only reduces computational overhead but also broadens the applicability of the foundation model to diverse scenarios. Experimentation show superior performance for AU and emotion detection tasks.
* ICME2025
* Accepted by ICME2025
Via
