Abstract:The Facial Action Coding System (FACS) has been used by numerous studies to investigate the links between facial behavior and mental health. The laborious and costly process of FACS coding has motivated the development of machine learning frameworks for Action Unit (AU) detection. Despite intense efforts spanning three decades, the detection accuracy for many AUs is considered to be below the threshold needed for behavioral research. Also, many AUs are excluded altogether, making it impossible to fulfill the ultimate goal of FACS-the representation of any facial expression in its entirety. This paper considers an alternative approach. Instead of creating automated tools that mimic FACS experts, we propose to use a new coding system that mimics the key properties of FACS. Specifically, we construct a data-driven coding system called the Facial Basis, which contains units that correspond to localized and interpretable 3D facial movements, and overcomes three structural limitations of automated FACS coding. First, the proposed method is completely unsupervised, bypassing costly, laborious and variable manual annotation. Second, Facial Basis reconstructs all observable movement, rather than relying on a limited repertoire of recognizable movements (as in automated FACS). Finally, the Facial Basis units are additive, whereas AUs may fail detection when they appear in a non-additive combination. The proposed method outperforms the most frequently used AU detector in predicting autism diagnosis from in-person and remote conversations, highlighting the importance of encoding facial behavior comprehensively. To our knowledge, Facial Basis is the first alternative to FACS for deconstructing facial expressions in videos into localized movements. We provide an open source implementation of the method at github.com/sariyanidi/FacialBasis.
Abstract:Computing the standard benchmark metric for 3D face reconstruction, namely geometric error, requires a number of steps, such as mesh cropping, rigid alignment, or point correspondence. Current benchmark tools are monolithic (they implement a specific combination of these steps), even though there is no consensus on the best way to measure error. We present a toolkit for a Modularized 3D Face reconstruction Benchmark (M3DFB), where the fundamental components of error computation are segregated and interchangeable, allowing one to quantify the effect of each. Furthermore, we propose a new component, namely correction, and present a computationally efficient approach that penalizes for mesh topology inconsistency. Using this toolkit, we test 16 error estimators with 10 reconstruction methods on two real and two synthetic datasets. Critically, the widely used ICP-based estimator provides the worst benchmarking performance, as it significantly alters the true ranking of the top-5 reconstruction methods. Notably, the correlation of ICP with the true error can be as low as 0.41. Moreover, non-rigid alignment leads to significant improvement (correlation larger than 0.90), highlighting the importance of annotating 3D landmarks on datasets. Finally, the proposed correction scheme, together with non-rigid warping, leads to an accuracy on a par with the best non-rigid ICP-based estimators, but runs an order of magnitude faster. Our open-source codebase is designed for researchers to easily compare alternatives for each component, thus helping accelerating progress in benchmarking for 3D face reconstruction and, furthermore, supporting the improvement of learned reconstruction methods, which depend on accurate error estimation for effective training.