Counterfactual explanations (CFs) are increasingly integrated into Machine Learning as a Service (MLaaS) systems to improve transparency; however, ML models deployed via APIs are already vulnerable to privacy attacks such as membership inference and model extraction, and the impact of explanations on this threat landscape remains insufficiently understood. In this work, we focus on the problem of how CFs expand the attack surface of MLaaS by strengthening membership inference attacks (MIAs), and on the need to design defense mechanisms that mitigate this emerging risk without undermining utility and explainability. First, we systematically analyze how exposing CFs through query-based APIs enables more effective shadow-based MIAs. Second, we propose a defense framework that integrates Differential Privacy (DP) with Active Learning (AL) to jointly reduce memorization and limit effective training data exposure. Finally, we conduct an extensive empirical evaluation to characterize the three-way trade-off between privacy leakage, predictive performance, and explanation quality. Our findings highlight the need to carefully balance transparency, utility, and privacy in the responsible deployment of explainable MLaaS systems.
This paper proposes human-in-the-loop adaptation for Group Activity Feature Learning (GAFL) without group activity annotations. This human-in-the-loop adaptation is employed in a group-activity video retrieval framework to improve its retrieval performance. Our method initially pre-trains the GAF space based on the similarity of group activities in a self-supervised manner, unlike prior work that classifies videos into pre-defined group activity classes in a supervised learning manner. Our interactive fine-tuning process updates the GAF space to allow a user to better retrieve videos similar to query videos given by the user. In this fine-tuning, our proposed data-efficient video selection process provides several videos, which are selected from a video database, to the user in order to manually label these videos as positive or negative. These labeled videos are used to update (i.e., fine-tune) the GAF space, so that the positive and negative videos move closer to and farther away from the query videos through contrastive learning. Our comprehensive experimental results on two team sports datasets validate that our method significantly improves the retrieval performance. Ablation studies also demonstrate that several components in our human-in-the-loop adaptation contribute to the improvement of the retrieval performance. Code: https://github.com/chihina/GAFL-FINE-CVIU.
A quadruped robot faces balancing challenges on a six-degrees-of-freedom moving platform, like subways, buses, airplanes, and yachts, due to independent platform motions and resultant diverse inertia forces on the robot. To alleviate these challenges, we present the Learning-based Active Stabilization on Moving Platforms (\textit{LAS-MP}), featuring a self-balancing policy and system state estimators. The policy adaptively adjusts the robot's posture in response to the platform's motion. The estimators infer robot and platform states based on proprioceptive sensor data. For a systematic training scheme across various platform motions, we introduce platform trajectory generation and scheduling methods. Our evaluation demonstrates superior balancing performance across multiple metrics compared to three baselines. Furthermore, we conduct a detailed analysis of the \textit{LAS-MP}, including ablation studies and evaluation of the estimators, to validate the effectiveness of each component.
Quadruped robots face limitations in long-range navigation efficiency due to their reliance on legs. To ameliorate the limitations, we introduce a Reinforcement Learning-based Active Transporter Riding method (\textit{RL-ATR}), inspired by humans' utilization of personal transporters, including Segways. The \textit{RL-ATR} features a transporter riding policy and two state estimators. The policy devises adequate maneuvering strategies according to transporter-specific control dynamics, while the estimators resolve sensor ambiguities in non-inertial frames by inferring unobservable robot and transporter states. Comprehensive evaluations in simulation validate proficient command tracking abilities across various transporter-robot models and reduced energy consumption compared to legged locomotion. Moreover, we conduct ablation studies to quantify individual component contributions within the \textit{RL-ATR}. This riding ability could broaden the locomotion modalities of quadruped robots, potentially expanding the operational range and efficiency.
Bayesian active learning relies on the precise quantification of predictive uncertainty to explore unknown function landscapes. While Gaussian process surrogates are the standard for such tasks, an underappreciated fact is that their posterior variance depends on the observed outputs only through the hyperparameters, rendering exploration largely insensitive to the actual measurements. We propose to inject observation-dependent feedback by warping the input space with a learned, monotone reparameterization. This mechanism allows the design policy to expand or compress regions of the input space in response to observed variability, thereby shaping the behavior of variance-based acquisition functions. We demonstrate that while such warps can be trained via marginal likelihood, a novel self-supervised objective yields substantially better performance. Our approach improves sample efficiency across a range of active learning benchmarks, particularly in regimes where non-stationarity challenges traditional methods.
Modern machine learning has achieved remarkable success on many problems, but this success often depends on the existence of large, labeled datasets. While active learning can dramatically reduce labeling cost when annotations are expensive, early performance is frequently dominated by the initial seed set, typically chosen at random. In many applications, however, related or approximate datasets are readily available and can be leveraged to construct a better seed set. We introduce a new method for selecting the seed data set for active learning, Active-Transfer Bagging (ATBagging). ATBagging estimates the informativeness of candidate data point from a Bayesian interpretation of bagged ensemble models by comparing in-bag and out-of-bag predictive distributions from the labeled dataset, yielding an information-gain proxy. To avoid redundant selections, we impose feature-space diversity by sampling a determinantal point process (DPP) whose kernel uses Random Fourier Features and a quality-diversity factorization that incorporates the informativeness scores. This same blended method is used for selection of new data points to collect during the active learning phase. We evaluate ATBagging on four real-world datasets covering both target-transfer and feature-shift scenarios (QM9, ERA5, Forbes 2000, and Beijing PM2.5). Across seed sizes nseed = 10-100, ATBagging improves or ties early active learning and increases area under the learning-curve relative to alternative seed subset selection methodologies in almost all cases, with strongest benefits in low-data regimes. Thus, ATBagging provides a low-cost, high reward means to initiating active learning-based data collection.
Aligning large language models (LLMs) depends on high-quality datasets of human preference labels, which are costly to collect. Although active learning has been studied to improve sample efficiency relative to passive collection, many existing approaches adopt classical experimental design criteria such as G- or D-optimality. These objectives are not tailored to the structure of preference learning, leaving open the design of problem-specific algorithms. In this work, we identify a simple intuition specific to preference learning that calls into question the suitability of these existing design objectives. Motivated by this insight, we propose two active learning algorithms. The first provides the first instance-dependent label complexity guarantee for this setting, and the second is a simple, practical greedy method. We evaluate our algorithm on real-world preference datasets and observe improved sample efficiency compared to existing methods.
The escalating scale of Large Language Models (LLMs) necessitates efficient adaptation techniques. Model merging has gained prominence for its efficiency and controllability. However, existing merging techniques typically serve as post-hoc refinements or focus on mitigating task interference, often failing to capture the dynamic optimization benefits of supervised fine-tuning (SFT). In this work, we propose Streaming Merging, an innovative model updating paradigm that conceptualizes merging as an iterative optimization process. Central to this paradigm is \textbf{ARM} (\textbf{A}ctivation-guided \textbf{R}otation-aware \textbf{M}erging), a strategy designed to approximate gradient descent dynamics. By treating merging coefficients as learning rates and deriving rotation vectors from activation subspaces, ARM effectively steers parameter updates along data-driven trajectories. Unlike conventional linear interpolation, ARM aligns semantic subspaces to preserve the geometric structure of high-dimensional parameter evolution. Remarkably, ARM requires only early SFT checkpoints and, through iterative merging, surpasses the fully converged SFT model. Experimental results across model scales (1.7B to 14B) and diverse domains (e.g., math, code) demonstrate that ARM can transcend converged checkpoints. Extensive experiments show that ARM provides a scalable and lightweight framework for efficient model adaptation.
Detecting rare and diverse anomalies in highly imbalanced datasets-such as Advanced Persistent Threats (APTs) in cybersecurity-remains a fundamental challenge for machine learning systems. Active learning offers a promising direction by strategically querying an oracle to minimize labeling effort, yet conventional approaches often fail to exploit the intrinsic geometric structure of the feature space for model refinement. In this paper, we introduce SDA2E, a Sparse Dual Adversarial Attention-based AutoEncoder designed to learn compact and discriminative latent representations from imbalanced, high-dimensional data. We further propose a similarity-guided active learning framework that integrates three novel strategies to refine decision boundaries efficiently: mormal-like expansion, which enriches the training set with points similar to labeled normals to improve reconstruction fidelity; anomaly-like prioritization, which boosts ranking accuracy by focusing on points resembling known anomalies; and a hybrid strategy that combines both for balanced model refinement and ranking. A key component of our framework is a new similarity measure, Normalized Matching 1s (SIM_NM1), tailored for sparse binary embeddings. We evaluate SDA2E extensively across 52 imbalanced datasets, including multiple DARPA Transparent Computing scenarios, and benchmark it against 15 state-of-the-art anomaly detection methods. Results demonstrate that SDA2E consistently achieves superior ranking performance (nDCG up to 1.0 in several cases) while reducing the required labeled data by up to 80% compared to passive training. Statistical tests confirm the significance of these improvements. Our work establishes a robust, efficient, and statistically validated framework for anomaly detection that is particularly suited to cybersecurity applications such as APT detection.
The prediction of critical heat flux (CHF) using machine learning (ML) approaches has become a highly active research activity in recent years, the goal of which is to build models more accurate than current conventional approaches such as empirical correlations or lookup tables (LUTs). Previous work developed and deployed tube-based pure and hybrid ML models in the CTF subchannel code, however, full-scale reactor core simulations require the use of rod bundle geometries. Unlike isolated subchannels, rod bundles experience complex thermal hydraulic phenomena such as channel crossflow, spacer grid losses, and effects from unheated conductors. This study investigates the generalization of ML-based CHF prediction models in rod bundles after being trained on tube-based CHF data. A purely data-driven DNN and two hybrid bias-correction models were implemented in the CTF subchannel code and used to predict CHF location and magnitude in the Combustion Engineering 5-by-5 bundle CHF test series. The W-3 correlation, Bowring correlation, and Groeneveld LUT were used as baseline comparators. On average, all three ML-based approaches produced magnitude and location predictions more accurate than the baseline models, with the hybrid LUT model exhibiting the most favorable performance metrics.