Digital Health & Machine Learning, Hasso Plattner Institute, University of Potsdam, Germany
Abstract:Large language models (LLMs) have become ubiquitous in practice and are widely used for generation tasks such as translation, summarization and instruction following. However, their enormous size and reliance on autoregressive decoding increase deployment costs and complicate their use in latency-critical applications. In this work, we propose a hybrid approach that combines language models of different sizes to increase the efficiency of autoregressive decoding while maintaining high performance. Our method utilizes a pretrained frozen LLM that encodes all prompt tokens once in parallel, and uses the resulting representations to condition and guide a small language model (SLM), which then generates the response more efficiently. We investigate the combination of encoder-decoder LLMs with both encoder-decoder and decoder-only SLMs from different model families and only require fine-tuning of the SLM. Experiments with various benchmarks show substantial speedups of up to $4\times$, with minor performance penalties of $1-2\%$ for translation and summarization tasks compared to the LLM.
Abstract:High-resolution images are prevalent in various applications, such as autonomous driving and computer-aided diagnosis. However, training neural networks on such images is computationally challenging and easily leads to out-of-memory errors even on modern GPUs. We propose a simple method, Iterative Patch Selection (IPS), which decouples the memory usage from the input size and thus enables the processing of arbitrarily large images under tight hardware constraints. IPS achieves this by selecting only the most salient patches, which are then aggregated into a global representation for image recognition. For both patch selection and aggregation, a cross-attention based transformer is introduced, which exhibits a close connection to Multiple Instance Learning. Our method demonstrates strong performance and has wide applicability across different domains, training regimes and image sizes while using minimal accelerator memory. For example, we are able to finetune our model on whole-slide images consisting of up to 250k patches (>16 gigapixels) with only 5 GB of GPU VRAM at a batch size of 16.
Abstract:Since labeling medical image data is a costly and labor-intensive process, active learning has gained much popularity in the medical image segmentation domain in recent years. A variety of active learning strategies have been proposed in the literature, but their effectiveness is highly dependent on the dataset and training scenario. To facilitate the comparison of existing strategies and provide a baseline for evaluating novel strategies, we evaluate the performance of several well-known active learning strategies on three datasets from the Medical Segmentation Decathlon. Additionally, we consider a strided sampling strategy specifically tailored to 3D image data. We demonstrate that both random and strided sampling act as strong baselines and discuss the advantages and disadvantages of the studied methods. To allow other researchers to compare their work to our results, we provide an open-source framework for benchmarking active learning strategies on a variety of medical segmentation datasets.
Abstract:We propose a simple and efficient image classification architecture based on deep multiple instance learning, and apply it to the challenging task of caries detection in dental radiographs. Technically, our approach contributes in two ways: First, it outputs a heatmap of local patch classification probabilities despite being trained with weak image-level labels. Second, it is amenable to learning from segmentation labels to guide training. In contrast to existing methods, the human user can faithfully interpret predictions and interact with the model to decide which regions to attend to. Experiments are conducted on a large clinical dataset of $\sim$38k bitewings ($\sim$316k teeth), where we achieve competitive performance compared to various baselines. When guided by an external caries segmentation model, a significant improvement in classification and localization performance is observed.
Abstract:Self-supervised learning methods have witnessed a recent surge of interest after proving successful in multiple application fields. In this work, we leverage these techniques, and we propose 3D versions for five different self-supervised methods, in the form of proxy tasks. Our methods facilitate neural network feature learning from unlabeled 3D images, aiming to reduce the required cost for expert annotation. The developed algorithms are 3D Contrastive Predictive Coding, 3D Rotation prediction, 3D Jigsaw puzzles, Relative 3D patch location, and 3D Exemplar networks. Our experiments show that pretraining models with our 3D tasks yields more powerful semantic representations, and enables solving downstream tasks more accurately and efficiently, compared to training the models from scratch and to pretraining them on 2D slices. We demonstrate the effectiveness of our methods on three downstream tasks from the medical imaging domain: i) Brain Tumor Segmentation from 3D MRI, ii) Pancreas Tumor Segmentation from 3D CT, and iii) Diabetic Retinopathy Detection from 2D Fundus images. In each task, we assess the gains in data-efficiency, performance, and speed of convergence. We achieve results competitive to state-of-the-art solutions at a fraction of the computational expense. We also publish the implementations for the 3D and 2D versions of our algorithms as an open-source library, in an effort to allow other researchers to apply and extend our methods on their datasets.