InterDigital, Inc
Abstract:Diffusion Models (DM) and Consistency Models (CM) are two types of popular generative models with good generation quality on various tasks. When training DM and CM, intermediate weight checkpoints are not fully utilized and only the last converged checkpoint is used. In this work, we find that high-quality model weights often lie in a basin which cannot be reached by SGD but can be obtained by proper checkpoint averaging. Based on these observations, we propose LCSC, a simple but effective and efficient method to enhance the performance of DM and CM, by combining checkpoints along the training trajectory with coefficients deduced from evolutionary search. We demonstrate the value of LCSC through two use cases: $\textbf{(a) Reducing training cost.}$ With LCSC, we only need to train DM/CM with fewer number of iterations and/or lower batch sizes to obtain comparable sample quality with the fully trained model. For example, LCSC achieves considerable training speedups for CM (23$\times$ on CIFAR-10 and 15$\times$ on ImageNet-64). $\textbf{(b) Enhancing pre-trained models.}$ Assuming full training is already done, LCSC can further improve the generation quality or speed of the final converged models. For example, LCSC achieves better performance using 1 number of function evaluation (NFE) than the base model with 2 NFE on consistency distillation, and decreases the NFE of DM from 15 to 9 while maintaining the generation quality on CIFAR-10. Our code is available at https://github.com/imagination-research/LCSC.
Abstract:In recent years, there has been significant progress in the development of text-to-image generative models. Evaluating the quality of the generative models is one essential step in the development process. Unfortunately, the evaluation process could consume a significant amount of computational resources, making the required periodic evaluation of model performance (e.g., monitoring training progress) impractical. Therefore, we seek to improve the evaluation efficiency by selecting the representative subset of the text-image dataset. We systematically investigate the design choices, including the selection criteria (textural features or image-based metrics) and the selection granularity (prompt-level or set-level). We find that the insights from prior work on subset selection for training data do not generalize to this problem, and we propose FlashEval, an iterative search algorithm tailored to evaluation data selection. We demonstrate the effectiveness of FlashEval on ranking diffusion models with various configurations, including architectures, quantization levels, and sampler schedules on COCO and DiffusionDB datasets. Our searched 50-item subset could achieve comparable evaluation quality to the randomly sampled 500-item subset for COCO annotations on unseen models, achieving a 10x evaluation speedup. We release the condensed subset of these commonly used datasets to help facilitate diffusion algorithm design and evaluation, and open-source FlashEval as a tool for condensing future datasets, accessible at https://github.com/thu-nics/FlashEval.
Abstract:Many methods in differentially private model training rely on computing the similarity between a query point (such as public or synthetic data) and private data. We abstract out this common subroutine and study the following fundamental algorithmic problem: Given a similarity function $f$ and a large high-dimensional private dataset $X \subset \mathbb{R}^d$, output a differentially private (DP) data structure which approximates $\sum_{x \in X} f(x,y)$ for any query $y$. We consider the cases where $f$ is a kernel function, such as $f(x,y) = e^{-\|x-y\|_2^2/\sigma^2}$ (also known as DP kernel density estimation), or a distance function such as $f(x,y) = \|x-y\|_2$, among others. Our theoretical results improve upon prior work and give better privacy-utility trade-offs as well as faster query times for a wide range of kernels and distance functions. The unifying approach behind our results is leveraging `low-dimensional structures' present in the specific functions $f$ that we study, using tools such as provable dimensionality reduction, approximation theory, and one-dimensional decomposition of the functions. Our algorithms empirically exhibit improved query times and accuracy over prior state of the art. We also present an application to DP classification. Our experiments demonstrate that the simple methodology of classifying based on average similarity is orders of magnitude faster than prior DP-SGD based approaches for comparable accuracy.
Abstract:Text data has become extremely valuable due to the emergence of machine learning algorithms that learn from it. A lot of high-quality text data generated in the real world is private and therefore cannot be shared or used freely due to privacy concerns. Generating synthetic replicas of private text data with a formal privacy guarantee, i.e., differential privacy (DP), offers a promising and scalable solution. However, existing methods necessitate DP finetuning of large language models (LLMs) on private data to generate DP synthetic data. This approach is not viable for proprietary LLMs (e.g., GPT-3.5) and also demands considerable computational resources for open-source LLMs. Lin et al. (2024) recently introduced the Private Evolution (PE) algorithm to generate DP synthetic images with only API access to diffusion models. In this work, we propose an augmented PE algorithm, named Aug-PE, that applies to the complex setting of text. We use API access to an LLM and generate DP synthetic text without any model training. We conduct comprehensive experiments on three benchmark datasets. Our results demonstrate that Aug-PE produces DP synthetic text that yields competitive utility with the SOTA DP finetuning baselines. This underscores the feasibility of relying solely on API access of LLMs to produce high-quality DP synthetic texts, thereby facilitating more accessible routes to privacy-preserving LLM applications. Our code and data are available at https://github.com/AI-secure/aug-pe.
Abstract:Long-term time series forecasting (LTSF) aims to predict future values of a time series given the past values. The current state-of-the-art (SOTA) on this problem is attained in some cases by linear-centric models, which primarily feature a linear mapping layer. However, due to their inherent simplicity, they are not able to adapt their prediction rules to periodic changes in time series patterns. To address this challenge, we propose a Mixture-of-Experts-style augmentation for linear-centric models and propose Mixture-of-Linear-Experts (MoLE). Instead of training a single model, MoLE trains multiple linear-centric models (i.e., experts) and a router model that weighs and mixes their outputs. While the entire framework is trained end-to-end, each expert learns to specialize in a specific temporal pattern, and the router model learns to compose the experts adaptively. Experiments show that MoLE reduces forecasting error of linear-centric models, including DLinear, RLinear, and RMLP, in over 78% of the datasets and settings we evaluated. By using MoLE existing linear-centric models can achieve SOTA LTSF results in 68% of the experiments that PatchTST reports and we compare to, whereas existing single-head linear-centric models achieve SOTA results in only 25% of cases. Additionally, MoLE models achieve SOTA in all settings for the newly released Weather2K datasets.
Abstract:With the ever-increasing demand for high-speed wireless data transmission, beamforming techniques have been proven to be crucial in improving the data rate and the signal-to-noise ratio (SNR) at the receiver. However, they require feedback mechanisms that need an overhead of information and increase the system complexity, potentially challenging the efficiency and capacity of modern wireless networks. This paper investigates novel index-based feedback mechanisms that aim at reducing the beamforming feedback overhead in Wi-Fi links. The proposed methods mitigate the overhead by generating a set of candidate beamforming vectors using an unsupervised learning-based framework. The amount of feedback information required is thus reduced by using the index of the candidate as feedback instead of transmitting the entire beamforming matrix. We explore several methods that consider different representations of the data in the candidate set. In particular, we propose five different ways to generate and represent the candidate sets that consider the covariance matrices of the channel, serialize the feedback matrix, and account for the effective distance, among others. Additionally, we also discuss the implications of using partial information in the compressed beamforming feedback on the link performance and compare it with the newly proposed index-based methods. Extensive IEEE 802.11 standard-compliant simulation results show that the proposed methods effectively minimize the feedback overhead, enhancing the throughput while maintaining an adequate link performance.
Abstract:Compressed beamforming algorithm is used in the current Wi-Fi standard to reduce the beamforming feedback overhead (BFO). However, with each new amendment of the standard the number of supported antennas in Wi-Fi devices increases, leading to increased BFO and hampering the throughput despite using compressed beamforming. In this paper, a novel index-based method is presented to reduce the BFO in Wi-Fi links. In particular, a k-means clustering-based approach is presented to generate candidate beamforming feedback matrices, thereby reducing the BFO to only the index of the said candidate matrices. With extensive simulation results, we compare the newly proposed method with the IEEE 802.11be baseline and our previously published index-based method. We show approximately 54% gain in throughput at high signal-to-noise (SNR) against the IEEE 802.11be baseline. Our comparison also shows approximately 4 dB gain compared to our previously published method at the packet-error-rate (PER) of 0.01 using MCS index 11. Additionally, we also discuss the impact of the distance metric chosen for clustering as well as candidate selection on the link performance.
Abstract:We study the problem of in-context learning (ICL) with large language models (LLMs) on private datasets. This scenario poses privacy risks, as LLMs may leak or regurgitate the private examples demonstrated in the prompt. We propose a novel algorithm that generates synthetic few-shot demonstrations from the private dataset with formal differential privacy (DP) guarantees, and show empirically that it can achieve effective ICL. We conduct extensive experiments on standard benchmarks and compare our algorithm with non-private ICL and zero-shot solutions. Our results demonstrate that our algorithm can achieve competitive performance with strong privacy levels. These results open up new possibilities for ICL with privacy protection for a broad range of applications.
Abstract:This work aims at decreasing the end-to-end generation latency of large language models (LLMs). One of the major causes of the high generation latency is the sequential decoding approach adopted by almost all state-of-the-art LLMs. In this work, motivated by the thinking and writing process of humans, we propose "Skeleton-of-Thought" (SoT), which guides LLMs to first generate the skeleton of the answer, and then conducts parallel API calls or batched decoding to complete the contents of each skeleton point in parallel. Not only does SoT provide considerable speed-up (up to 2.39x across 11 different LLMs), but it can also potentially improve the answer quality on several question categories in terms of diversity and relevance. SoT is an initial attempt at data-centric optimization for efficiency, and reveal the potential of pushing LLMs to think more like a human for answer quality.
Abstract:Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance - where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives - including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/.