Alert button
Picture for Xingwei Wang

Xingwei Wang

Alert button

ID Embedding as Subtle Features of Content and Structure for Multimodal Recommendation

Nov 10, 2023
Yuting Liu, Enneng Yang, Yizhou Dang, Guibing Guo, Qiang Liu, Yuliang Liang, Linying Jiang, Xingwei Wang

Multimodal recommendation aims to model user and item representations comprehensively with the involvement of multimedia content for effective recommendations. Existing research has shown that it is beneficial for recommendation performance to combine (user- and item-) ID embeddings with multimodal salient features, indicating the value of IDs. However, there is a lack of a thorough analysis of the ID embeddings in terms of feature semantics in the literature. In this paper, we revisit the value of ID embeddings for multimodal recommendation and conduct a thorough study regarding its semantics, which we recognize as subtle features of content and structures. Then, we propose a novel recommendation model by incorporating ID embeddings to enhance the semantic features of both content and structures. Specifically, we put forward a hierarchical attention mechanism to incorporate ID embeddings in modality fusing, coupled with contrastive learning, to enhance content representations. Meanwhile, we propose a lightweight graph convolutional network for each modality to amalgamate neighborhood and ID embeddings for improving structural representations. Finally, the content and structure representations are combined to form the ultimate item embedding for recommendation. Extensive experiments on three real-world datasets (Baby, Sports, and Clothing) demonstrate the superiority of our method over state-of-the-art multimodal recommendation methods and the effectiveness of fine-grained ID embeddings.

Viaarxiv icon

AdaMerging: Adaptive Model Merging for Multi-Task Learning

Oct 04, 2023
Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, Dacheng Tao

Multi-task learning (MTL) aims to empower a model to tackle multiple tasks simultaneously. A recent development known as task arithmetic has revealed that several models, each fine-tuned for distinct tasks, can be directly merged into a single model to execute MTL without necessitating a retraining process using the initial training data. Nevertheless, this direct addition of models often leads to a significant deterioration in the overall performance of the merged model. This decline occurs due to potential conflicts and intricate correlations among the multiple tasks. Consequently, the challenge emerges of how to merge pre-trained models more effectively without using their original training data. This paper introduces an innovative technique called Adaptive Model Merging (AdaMerging). This approach aims to autonomously learn the coefficients for model merging, either in a task-wise or layer-wise manner, without relying on the original training data. Specifically, our AdaMerging method operates as an automatic, unsupervised task arithmetic scheme. It leverages entropy minimization on unlabeled test samples from the multi-task setup as a surrogate objective function to iteratively refine the merging coefficients of the multiple models. Our experimental findings across eight tasks demonstrate the efficacy of the AdaMerging scheme we put forth. Compared to the current state-of-the-art task arithmetic merging scheme, AdaMerging showcases a remarkable 11\% improvement in performance. Notably, AdaMerging also exhibits superior generalization capabilities when applied to unseen downstream tasks. Furthermore, it displays a significantly enhanced robustness to data distribution shifts that may occur during the testing phase.

Viaarxiv icon

Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation

Sep 01, 2023
Xingwei Wang, Haiquan Lu, Yong Zeng, Xiaoli Xu, Jie Xu

Figure 1 for Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation
Figure 2 for Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation
Figure 3 for Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation
Figure 4 for Achievable Rate Region and Path-Based Beamforming for Multi-User Single-Carrier Delay Alignment Modulation

Delay alignment modulation (DAM) is a novel wideband transmission technique for mmWave massive MIMO systems, which exploits the high spatial resolution and multi-path sparsity to mitigate ISI, without relying on channel equalization or multi-carrier transmission. In particular, DAM leverages the delay pre-compensation and path-based beamforming to effectively align the multi-path components, thus achieving the constructive multi-path combination for eliminating the ISI while preserving the multi-path power gain. Different from the existing works only considering single-user DAM, this paper investigates the DAM technique for multi-user mmWave massive MIMO communication. First, we consider the asymptotic regime when the number of antennas Mt at BS is sufficiently large. It is shown that by employing the simple delay pre-compensation and per-path-based MRT beamforming, the single-carrier DAM is able to perfectly eliminate both ISI and IUI. Next, we consider the general scenario with Mt being finite. In this scenario, we characterize the achievable rate region of the multi-user DAM system by finding its Pareto boundary. Specifically, we formulate a rate-profile-constrained sum rate maximization problem by optimizing the per-path-based beamforming. Furthermore, we present three low-complexity per-path-based beamforming strategies based on the MRT, zero-forcing, and regularized zero-forcing principles, respectively, based on which the achievable sum rates are studied. Finally, we provide simulation results to demonstrate the performance of our proposed strategies as compared to two benchmark schemes based on the strongest-path-based beamforming and the prevalent OFDM, respectively. It is shown that DAM achieves higher spectral efficiency and/or lower peak-to-average-ratio, for systems with high spatial resolution and multi-path diversity.

* 13 pages, 5 figures 
Viaarxiv icon

Continual Learning From a Stream of APIs

Aug 31, 2023
Enneng Yang, Zhenyi Wang, Li Shen, Nan Yin, Tongliang Liu, Guibing Guo, Xingwei Wang, Dacheng Tao

Figure 1 for Continual Learning From a Stream of APIs
Figure 2 for Continual Learning From a Stream of APIs
Figure 3 for Continual Learning From a Stream of APIs
Figure 4 for Continual Learning From a Stream of APIs

Continual learning (CL) aims to learn new tasks without forgetting previous tasks. However, existing CL methods require a large amount of raw data, which is often unavailable due to copyright considerations and privacy risks. Instead, stakeholders usually release pre-trained machine learning models as a service (MLaaS), which users can access via APIs. This paper considers two practical-yet-novel CL settings: data-efficient CL (DECL-APIs) and data-free CL (DFCL-APIs), which achieve CL from a stream of APIs with partial or no raw data. Performing CL under these two new settings faces several challenges: unavailable full raw data, unknown model parameters, heterogeneous models of arbitrary architecture and scale, and catastrophic forgetting of previous APIs. To overcome these issues, we propose a novel data-free cooperative continual distillation learning framework that distills knowledge from a stream of APIs into a CL model by generating pseudo data, just by querying APIs. Specifically, our framework includes two cooperative generators and one CL model, forming their training as an adversarial game. We first use the CL model and the current API as fixed discriminators to train generators via a derivative-free method. Generators adversarially generate hard and diverse synthetic data to maximize the response gap between the CL model and the API. Next, we train the CL model by minimizing the gap between the responses of the CL model and the black-box API on synthetic data, to transfer the API's knowledge to the CL model. Furthermore, we propose a new regularization term based on network similarity to prevent catastrophic forgetting of previous APIs.Our method performs comparably to classic CL with full raw data on the MNIST and SVHN in the DFCL-APIs setting. In the DECL-APIs setting, our method achieves 0.97x, 0.75x and 0.69x performance of classic CL on CIFAR10, CIFAR100, and MiniImageNet.

Viaarxiv icon

Federated Domain Generalization: A Survey

Jun 02, 2023
Ying Li, Xingwei Wang, Rongfei Zeng, Praveen Kumar Donta, Ilir Murturi, Min Huang, Schahram Dustdar

Figure 1 for Federated Domain Generalization: A Survey
Figure 2 for Federated Domain Generalization: A Survey
Figure 3 for Federated Domain Generalization: A Survey
Figure 4 for Federated Domain Generalization: A Survey

Machine learning typically relies on the assumption that training and testing distributions are identical and that data is centrally stored for training and testing. However, in real-world scenarios, distributions may differ significantly and data is often distributed across different devices, organizations, or edge nodes. Consequently, it is imperative to develop models that can effectively generalize to unseen distributions where data is distributed across different domains. In response to this challenge, there has been a surge of interest in federated domain generalization (FDG) in recent years. FDG combines the strengths of federated learning (FL) and domain generalization (DG) techniques to enable multiple source domains to collaboratively learn a model capable of directly generalizing to unseen domains while preserving data privacy. However, generalizing the federated model under domain shifts is a technically challenging problem that has received scant attention in the research area so far. This paper presents the first survey of recent advances in this area. Initially, we discuss the development process from traditional machine learning to domain adaptation and domain generalization, leading to FDG as well as provide the corresponding formal definition. Then, we categorize recent methodologies into four classes: federated domain alignment, data manipulation, learning strategies, and aggregation optimization, and present suitable algorithms in detail for each category. Next, we introduce commonly used datasets, applications, evaluations, and benchmarks. Finally, we conclude this survey by providing some potential research topics for the future.

Viaarxiv icon

Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation

Dec 16, 2022
Yizhou Dang, Enneng Yang, Guibing Guo, Linying Jiang, Xingwei Wang, Xiaoxiao Xu, Qinghui Sun, Hong Liu

Figure 1 for Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation
Figure 2 for Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation
Figure 3 for Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation
Figure 4 for Uniform Sequence Better: Time Interval Aware Data Augmentation for Sequential Recommendation

Sequential recommendation is an important task to predict the next-item to access based on a sequence of interacted items. Most existing works learn user preference as the transition pattern from the previous item to the next one, ignoring the time interval between these two items. However, we observe that the time interval in a sequence may vary significantly different, and thus result in the ineffectiveness of user modeling due to the issue of \emph{preference drift}. In fact, we conducted an empirical study to validate this observation, and found that a sequence with uniformly distributed time interval (denoted as uniform sequence) is more beneficial for performance improvement than that with greatly varying time interval. Therefore, we propose to augment sequence data from the perspective of time interval, which is not studied in the literature. Specifically, we design five operators (Ti-Crop, Ti-Reorder, Ti-Mask, Ti-Substitute, Ti-Insert) to transform the original non-uniform sequence to uniform sequence with the consideration of variance of time intervals. Then, we devise a control strategy to execute data augmentation on item sequences in different lengths. Finally, we implement these improvements on a state-of-the-art model CoSeRec and validate our approach on four real datasets. The experimental results show that our approach reaches significantly better performance than the other 11 competing methods. Our implementation is available: https://github.com/KingGugu/TiCoSeRec.

* 9 pages, 4 figures, AAAI-2023 
Viaarxiv icon

Multi-User Delay Alignment Modulation for Millimeter Wave Massive MIMO

Nov 14, 2022
Xingwei Wang, Haiquan Lu, Yong Zeng

Figure 1 for Multi-User Delay Alignment Modulation for Millimeter Wave Massive MIMO
Figure 2 for Multi-User Delay Alignment Modulation for Millimeter Wave Massive MIMO
Figure 3 for Multi-User Delay Alignment Modulation for Millimeter Wave Massive MIMO
Figure 4 for Multi-User Delay Alignment Modulation for Millimeter Wave Massive MIMO

Delay alignment modulation (DAM) is a novel wideband communication technique, which exploits the high spatial resolution and multi-path sparsity of millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems to mitigate inter-symbol interference (ISI), without relying on conventional techniques like channel equalization or multi-carrier transmission. In this paper, we extend the DAM technique to multi-user mmWave massive MIMO communication systems. We first provide asymptotic analysis by showing that when the number of base station (BS) antennas is much larger than the total number of channel paths, DAM is able to eliminate both ISI and inter-user interference (IUI) with the simple delay pre-compensation and per-path-based maximal ratio transmission (MRT) beamforming. We then study the general multi-user DAM design by considering the three classical transmit beamforming strategies in a per-path basis, namely MRT, zero-forcing (ZF) and regularized zero-forcing (RZF). Simulation results demonstrate that multi-user DAM can significantly outperform the benchmarking single-carrier ISI mitigation technique that only uses the strongest channel path of each user.

* 6 pages, 5 figures 
Viaarxiv icon

CD$^2$: Fine-grained 3D Mesh Reconstruction with Twice Chamfer Distance

Jun 01, 2022
Rongfei Zeng, Mai Su, Xingwei Wang

Figure 1 for CD$^2$: Fine-grained 3D Mesh Reconstruction with Twice Chamfer Distance
Figure 2 for CD$^2$: Fine-grained 3D Mesh Reconstruction with Twice Chamfer Distance
Figure 3 for CD$^2$: Fine-grained 3D Mesh Reconstruction with Twice Chamfer Distance
Figure 4 for CD$^2$: Fine-grained 3D Mesh Reconstruction with Twice Chamfer Distance

Monocular 3D reconstruction is to reconstruct the shape of object and its other detailed information from a single RGB image. In 3D reconstruction, polygon mesh is the most prevalent expression form obtained from deep learning models, with detailed surface information and low computational cost. However, some state-of-the-art works fail to generate well-structured meshes, these meshes have two severe problems which we call Vertices Clustering and Illegal Twist. By delving into the mesh deformation procedure, we pinpoint the inadequate usage of Chamfer Distance(CD) metric in deep learning model. In this paper, we initially demonstrate the problems resulting from CD with visual examples and quantitative analyses. To solve these problems, we propose a fine-grained reconstruction method CD$^2$ with Chamfer distance adopted twice to perform a plausible and adaptive deformation. Extensive experiments on two 3D datasets and the comparison of our newly proposed mesh quality metrics demonstrate that our CD$^2$ outperforms others by generating better-structured meshes.

* under review in TOMM 
Viaarxiv icon

Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image Segmentation

Dec 02, 2021
Xu Zheng, Chong Fu, Haoyu Xie, Jialei Chen, Xingwei Wang, Chiu-Wing Sham

Figure 1 for Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image Segmentation
Figure 2 for Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image Segmentation
Figure 3 for Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image Segmentation
Figure 4 for Uncertainty-Aware Deep Co-training for Semi-supervised Medical Image Segmentation

Semi-supervised learning has made significant strides in the medical domain since it alleviates the heavy burden of collecting abundant pixel-wise annotated data for semantic segmentation tasks. Existing semi-supervised approaches enhance the ability to extract features from unlabeled data with prior knowledge obtained from limited labeled data. However, due to the scarcity of labeled data, the features extracted by the models are limited in supervised learning, and the quality of predictions for unlabeled data also cannot be guaranteed. Both will impede consistency training. To this end, we proposed a novel uncertainty-aware scheme to make models learn regions purposefully. Specifically, we employ Monte Carlo Sampling as an estimation method to attain an uncertainty map, which can serve as a weight for losses to force the models to focus on the valuable region according to the characteristics of supervised learning and unsupervised learning. Simultaneously, in the backward process, we joint unsupervised and supervised losses to accelerate the convergence of the network via enhancing the gradient flow between different tasks. Quantitatively, we conduct extensive experiments on three challenging medical datasets. Experimental results show desirable improvements to state-of-the-art counterparts.

Viaarxiv icon