Abstract:Sequential recommendation (SR) learns user preferences based on their historical interaction sequences and provides personalized suggestions. In real-world scenarios, most users can only interact with a handful of items, while the majority of items are seldom consumed. This pervasive long-tail challenge limits the model's ability to learn user preferences. Despite previous efforts to enrich tail items/users with knowledge from head parts or improve tail learning through additional contextual information, they still face the following issues: 1) They struggle to improve the situation where interactions of tail users/items are scarce, leading to incomplete preferences learning for the tail parts. 2) Existing methods often degrade overall or head parts performance when improving accuracy for tail users/items, thereby harming the user experience. We propose Tail-Aware Data Augmentation (TADA) for long-tail sequential recommendation, which enhances the interaction frequency for tail items/users while maintaining head performance, thereby promoting the model's learning capabilities for the tail. Specifically, we first capture the co-occurrence and correlation among low-popularity items by a linear model. Building upon this, we design two tail-aware augmentation operators, T-Substitute and T-Insert. The former replaces the head item with a relevant item, while the latter utilizes co-occurrence relationships to extend the original sequence by incorporating both head and tail items. The augmented and original sequences are mixed at the representation level to preserve preference knowledge. We further extend the mix operation across different tail-user sequences and augmented sequences to generate richer augmented samples, thereby improving tail performance. Comprehensive experiments demonstrate the superiority of our method. The codes are provided at https://github.com/KingGugu/TADA.
Abstract:We study the problem of personalization in large language models (LLMs). Prior work predominantly represents user preferences as implicit, model-specific vectors or parameters, yielding opaque ``black-box'' profiles that are difficult to interpret and transfer across models and tasks. In contrast, we advocate natural language as a universal, model- and task-agnostic interface for preference representation. The formulation leads to interpretable and reusable preference descriptions, while naturally supporting continual evolution as new interactions are observed. To learn such representations, we introduce a two-stage training framework that combines supervised fine-tuning on high-quality synthesized data with reinforcement learning to optimize long-term utility and cross-task transferability. Based on this framework, we develop AlignXplore+, a universal preference reasoning model that generates textual preference summaries. Experiments on nine benchmarks show that our 8B model achieves state-of-the-art performanc -- outperforming substantially larger open-source models -- while exhibiting strong transferability across tasks, model families, and interaction formats.
Abstract:Multi-subject video generation aims to synthesize videos from textual prompts and multiple reference images, ensuring that each subject preserves natural scale and visual fidelity. However, current methods face two challenges: scale inconsistency, where variations in subject size lead to unnatural generation, and permutation sensitivity, where the order of reference inputs causes subject distortion. In this paper, we propose MoFu, a unified framework that tackles both challenges. For scale inconsistency, we introduce Scale-Aware Modulation (SMO), an LLM-guided module that extracts implicit scale cues from the prompt and modulates features to ensure consistent subject sizes. To address permutation sensitivity, we present a simple yet effective Fourier Fusion strategy that processes the frequency information of reference features via the Fast Fourier Transform to produce a unified representation. Besides, we design a Scale-Permutation Stability Loss to jointly encourage scale-consistent and permutation-invariant generation. To further evaluate these challenges, we establish a dedicated benchmark with controlled variations in subject scale and reference permutation. Extensive experiments demonstrate that MoFu significantly outperforms existing methods in preserving natural scale, subject fidelity, and overall visual quality.




Abstract:Heuristic negative sampling enhances recommendation performance by selecting negative samples of varying hardness levels from predefined candidate pools to guide the model toward learning more accurate decision boundaries. However, our empirical and theoretical analyses reveal that unobserved environmental confounders (e.g., exposure or popularity biases) in candidate pools may cause heuristic sampling methods to introduce false hard negatives (FHNS). These misleading samples can encourage the model to learn spurious correlations induced by such confounders, ultimately compromising its generalization ability under distribution shifts. To address this issue, we propose a novel method named Causal Negative Sampling via Diffusion (CNSDiff). By synthesizing negative samples in the latent space via a conditional diffusion process, CNSDiff avoids the bias introduced by predefined candidate pools and thus reduces the likelihood of generating FHNS. Moreover, it incorporates a causal regularization term to explicitly mitigate the influence of environmental confounders during the negative sampling process, leading to robust negatives that promote out-of-distribution (OOD) generalization. Comprehensive experiments under four representative distribution shift scenarios demonstrate that CNSDiff achieves an average improvement of 13.96% across all evaluation metrics compared to state-of-the-art baselines, verifying its effectiveness and robustness in OOD recommendation tasks.
Abstract:Personalized image generation is crucial for improving the user experience, as it renders reference images into preferred ones according to user visual preferences. Although effective, existing methods face two main issues. First, existing methods treat all items in the user historical sequence equally when extracting user preferences, overlooking the varying semantic similarities between historical items and the reference item. Disproportionately high weights for low-similarity items distort users' visual preferences for the reference item. Second, existing methods heavily rely on consistency between generated and reference images to optimize the generation, which leads to underfitting user preferences and hinders personalization. To address these issues, we propose Retrieval Augment Personalized Image GenerAtion guided by Recommendation (RAGAR). Our approach uses a retrieval mechanism to assign different weights to historical items according to their similarities to the reference item, thereby extracting more refined users' visual preferences for the reference item. Then we introduce a novel rank task based on the multi-modal ranking model to optimize the personalization of the generated images instead of forcing depend on consistency. Extensive experiments and human evaluations on three real-world datasets demonstrate that RAGAR achieves significant improvements in both personalization and semantic metrics compared to five baselines.
Abstract:Data augmentation has become a promising method of mitigating data sparsity in sequential recommendation. Existing methods generate new yet effective data during model training to improve performance. However, deploying them requires retraining, architecture modification, or introducing additional learnable parameters. The above steps are time-consuming and costly for well-trained models, especially when the model scale becomes large. In this work, we explore the test-time augmentation (TTA) for sequential recommendation, which augments the inputs during the model inference and then aggregates the model's predictions for augmented data to improve final accuracy. It avoids significant time and cost overhead from loss calculation and backward propagation. We first experimentally disclose the potential of existing augmentation operators for TTA and find that the Mask and Substitute consistently achieve better performance. Further analysis reveals that these two operators are effective because they retain the original sequential pattern while adding appropriate perturbations. Meanwhile, we argue that these two operators still face time-consuming item selection or interference information from mask tokens. Based on the analysis and limitations, we present TNoise and TMask. The former injects uniform noise into the original representation, avoiding the computational overhead of item selection. The latter blocks mask token from participating in model calculations or directly removes interactions that should have been replaced with mask tokens. Comprehensive experiments demonstrate the effectiveness, efficiency, and generalizability of our method. We provide an anonymous implementation at https://github.com/KingGugu/TTA4SR.
Abstract:Hard negative samples can accelerate model convergence and optimize decision boundaries, which is key to improving the performance of recommender systems. Although large language models (LLMs) possess strong semantic understanding and generation capabilities, systematic research has not yet been conducted on how to generate hard negative samples effectively. To fill this gap, this paper introduces the concept of Semantic Negative Sampling and exploreshow to optimize LLMs for high-quality, hard negative sampling. Specifically, we design an experimental pipeline that includes three main modules, profile generation, semantic negative sampling, and semantic alignment, to verify the potential of LLM-driven hard negative sampling in enhancing the accuracy of collaborative filtering (CF). Experimental results indicate that hard negative samples generated based on LLMs, when semantically aligned and integrated into CF, can significantly improve CF performance, although there is still a certain gap compared to traditional negative sampling methods. Further analysis reveals that this gap primarily arises from two major challenges: noisy samples and lack of behavioral constraints. To address these challenges, we propose a framework called HNLMRec, based on fine-tuning LLMs supervised by collaborative signals. Experimental results show that this framework outperforms traditional negative sampling and other LLM-driven recommendation methods across multiple datasets, providing new solutions for empowering traditional RS with LLMs. Additionally, we validate the excellent generalization ability of the LLM-based semantic negative sampling method on new datasets, demonstrating its potential in alleviating issues such as data sparsity, popularity bias, and the problem of false hard negative samples. Our implementation code is available at https://github.com/user683/HNLMRec.
Abstract:The distributionally robust optimization (DRO)-based graph neural network methods improve recommendation systems' out-of-distribution (OOD) generalization by optimizing the model's worst-case performance. However, these studies fail to consider the impact of noisy samples in the training data, which results in diminished generalization capabilities and lower accuracy. Through experimental and theoretical analysis, this paper reveals that current DRO-based graph recommendation methods assign greater weight to noise distribution, leading to model parameter learning being dominated by it. When the model overly focuses on fitting noise samples in the training data, it may learn irrelevant or meaningless features that cannot be generalized to OOD data. To address this challenge, we design a Distributionally Robust Graph model for OOD recommendation (DRGO). Specifically, our method first employs a simple and effective diffusion paradigm to alleviate the noisy effect in the latent space. Additionally, an entropy regularization term is introduced in the DRO objective function to avoid extreme sample weights in the worst-case distribution. Finally, we provide a theoretical proof of the generalization error bound of DRGO as well as a theoretical analysis of how our approach mitigates noisy sample effects, which helps to better understand the proposed framework from a theoretical perspective. We conduct extensive experiments on four datasets to evaluate the effectiveness of our framework against three typical distribution shifts, and the results demonstrate its superiority in both independently and identically distributed distributions (IID) and OOD.
Abstract:With the development of the digital economy, data is increasingly recognized as an essential resource for both work and life. However, due to privacy concerns, data owners tend to maximize the value of data through information flow rather than direct data transfer. Federated learning (FL) provides an effective approach to collaborative training models while preserving privacy. However, different data owners not only have variations in the quantity and quality of their data resources but also face mismatches between data and computing resources as model parameters and training data grow. These challenges hinder data owners' willingness to participate and reduce the effectiveness of data assetization. In this work, we first identify the resource-decoupled FL environment, which includes model owners, data owners, and computing centers. We design a Tripartite Stackelberg Model and theoretically analyze the Stackelberg-Nash Equilibrium (SNE) for participants to optimize global utility. We propose the Quality-aware Dynamic Resources-decoupled FL algorithm (QD-RDFL), in which we derive and solve the optimal strategies of all parties to achieve SHE using backward induction, and a dynamic optimization mechanism is designed to improve the optimal strategy profile by evaluating the contribution of data quality from data owners to the global model during real training. Our comprehensive experiments demonstrate that our method effectively encourages the linkage of the three parties involved, maximizing global utility and data asset value.




Abstract:Medication recommender is to suggest appropriate medication combinations based on a patient's health history, e.g., diagnoses and procedures. Existing works represent different diagnoses/procedures well separated by one-hot encodings. However, they ignore the latent hierarchical structures of these medical terms, undermining the generalization performance of the model. For example, "Respiratory Diseases", "Chronic Respiratory Diseases" and "Chronic Bronchiti" have a hierarchical relationship, progressing from general to specific. To address this issue, we propose a novel hierarchical encoder named HIER to hierarchically represent diagnoses and procedures, which is based on standard medical codes and compatible with any existing methods. Specifically, the proposed method learns relation embedding with a self-supervised objective for incorporating the neighbor hierarchical structure. Additionally, we develop the position encoding to explicitly introduce global hierarchical position. Extensive experiments demonstrate significant and consistent improvements in recommendation accuracy across four baselines and two real-world clinical datasets.