Abstract:Processor chip design technology serves as a key frontier driving breakthroughs in computer science and related fields. With the rapid advancement of information technology, conventional design paradigms face three major challenges: the physical constraints of fabrication technologies, the escalating demands for design resources, and the increasing diversity of ecosystems. Automated processor chip design has emerged as a transformative solution to address these challenges. While recent breakthroughs in Artificial Intelligence (AI), particularly Large Language Models (LLMs) techniques, have opened new possibilities for fully automated processor chip design, substantial challenges remain in establishing domain-specific LLMs for processor chip design. In this paper, we propose QiMeng, a novel system for fully automated hardware and software design of processor chips. QiMeng comprises three hierarchical layers. In the bottom-layer, we construct a domain-specific Large Processor Chip Model (LPCM) that introduces novel designs in architecture, training, and inference, to address key challenges such as knowledge representation gap, data scarcity, correctness assurance, and enormous solution space. In the middle-layer, leveraging the LPCM's knowledge representation and inference capabilities, we develop the Hardware Design Agent and the Software Design Agent to automate the design of hardware and software for processor chips. Currently, several components of QiMeng have been completed and successfully applied in various top-layer applications, demonstrating significant advantages and providing a feasible solution for efficient, fully automated hardware/software design of processor chips. Future research will focus on integrating all components and performing iterative top-down and bottom-up design processes to establish a comprehensive QiMeng system.
Abstract:Large language models (LLMs) have the potential to revolutionize how we design and implement compilers and code translation tools. However, existing LLMs struggle to handle long and complex programs. We introduce LEGO-Compiler, a novel neural compilation system that leverages LLMs to translate high-level languages into assembly code. Our approach centers on three key innovations: LEGO translation, which decomposes the input program into manageable blocks; breaking down the complex compilation process into smaller, simpler verifiable steps by organizing it as a verifiable LLM workflow by external tests; and a feedback mechanism for self-correction. Supported by formal proofs of translation composability, LEGO-Compiler demonstrates high accuracy on multiple datasets, including over 99% on ExeBench and 97.9% on industrial-grade AnsiBench. Additionally, LEGO-Compiler has also acheived near one order-of-magnitude improvement on compilable code size scalability. This work opens new avenues for applying LLMs to system-level tasks, complementing traditional compiler technologies.
Abstract:Content Warning: This paper may contain unsafe or harmful content generated by LLMs that may be offensive to readers. Large Language Models (LLMs) are extensively used as tooling platforms through structured output APIs to ensure syntax compliance so that robust integration with existing softwares like agent systems, could be achieved. However, the feature enabling functionality of grammar-guided structured output presents significant security vulnerabilities. In this work, we reveal a critical control-plane attack surface orthogonal to traditional data-plane vulnerabilities. We introduce Constrained Decoding Attack (CDA), a novel jailbreak class that weaponizes structured output constraints to bypass safety mechanisms. Unlike prior attacks focused on input prompts, CDA operates by embedding malicious intent in schema-level grammar rules (control-plane) while maintaining benign surface prompts (data-plane). We instantiate this with a proof-of-concept Chain Enum Attack, achieves 96.2% attack success rates across proprietary and open-weight LLMs on five safety benchmarks with a single query, including GPT-4o and Gemini-2.0-flash. Our findings identify a critical security blind spot in current LLM architectures and urge a paradigm shift in LLM safety to address control-plane vulnerabilities, as current mechanisms focused solely on data-plane threats leave critical systems exposed.