Abstract:Recent advancements in LLMs have led to significant breakthroughs in various AI applications. However, their sophisticated capabilities also introduce severe safety concerns, particularly the generation of harmful content through jailbreak attacks. Current safety testing for LLMs often relies on static datasets and lacks systematic criteria to evaluate the quality and adequacy of these tests. While coverage criteria have been effective for smaller neural networks, they are not directly applicable to LLMs due to scalability issues and differing objectives. To address these challenges, this paper introduces RACA, a novel set of coverage criteria specifically designed for LLM safety testing. RACA leverages representation engineering to focus on safety-critical concepts within LLMs, thereby reducing dimensionality and filtering out irrelevant information. The framework operates in three stages: first, it identifies safety-critical representations using a small, expert-curated calibration set of jailbreak prompts. Second, it calculates conceptual activation scores for a given test suite based on these representations. Finally, it computes coverage results using six sub-criteria that assess both individual and compositional safety concepts. We conduct comprehensive experiments to validate RACA's effectiveness, applicability, and generalization, where the results demonstrate that RACA successfully identifies high-quality jailbreak prompts and is superior to traditional neuron-level criteria. We also showcase its practical application in real-world scenarios, such as test set prioritization and attack prompt sampling. Furthermore, our findings confirm RACA's generalization to various scenarios and its robustness across various configurations. Overall, RACA provides a new framework for evaluating the safety of LLMs, contributing a valuable technique to the field of testing for AI.
Abstract:The significant progress of large language models (LLMs) has led to remarkable achievements across numerous applications. However, their ability to generate harmful content has sparked substantial safety concerns. Despite the implementation of safety alignment techniques during the pre-training phase, recent research indicates that fine-tuning LLMs on adversarial or even benign data can inadvertently compromise their safety. In this paper, we re-examine the fundamental issue of why fine-tuning on non-harmful data still results in safety degradation. We introduce a safety-aware probing (SAP) optimization framework designed to mitigate the safety risks of fine-tuning LLMs. Specifically, SAP incorporates a safety-aware probe into the gradient propagation process, mitigating the model's risk of safety degradation by identifying potential pitfalls in gradient directions, thereby enhancing task-specific performance while successfully preserving model safety. Our extensive experimental results demonstrate that SAP effectively reduces harmfulness below the original fine-tuned model and achieves comparable test loss to standard fine-tuning methods. Our code is available at https://github.com/ChengcanWu/SAP.