Abstract:Text-to-image diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of diffusion models can inadvertently lead to the generation of not-safe-for-work (NSFW) content, posing significant risks to their safe deployment. While several concept erasure methods have been proposed to mitigate the issue associated with NSFW content, a comprehensive evaluation of their effectiveness across various scenarios remains absent. To bridge this gap, we introduce a full-pipeline toolkit specifically designed for concept erasure and conduct the first systematic study of NSFW concept erasure methods. By examining the interplay between the underlying mechanisms and empirical observations, we provide in-depth insights and practical guidance for the effective application of concept erasure methods in various real-world scenarios, with the aim of advancing the understanding of content safety in diffusion models and establishing a solid foundation for future research and development in this critical area.
Abstract:The remarkable ability of diffusion models to generate high-fidelity images has led to their widespread adoption. However, concerns have also arisen regarding their potential to produce Not Safe for Work (NSFW) content and exhibit social biases, hindering their practical use in real-world applications. In response to this challenge, prior work has focused on employing security filters to identify and exclude toxic text, or alternatively, fine-tuning pre-trained diffusion models to erase sensitive concepts. Unfortunately, existing methods struggle to achieve satisfactory performance in the sense that they can have a significant impact on the normal model output while still failing to prevent the generation of harmful content in some cases. In this paper, we propose a novel self-discovery approach to identifying a semantic direction vector in the embedding space to restrict text embedding within a safe region. Our method circumvents the need for correcting individual words within the input text and steers the entire text prompt towards a safe region in the embedding space, thereby enhancing model robustness against all possibly unsafe prompts. In addition, we employ Low-Rank Adaptation (LoRA) for semantic direction vector initialization to reduce the impact on the model performance for other semantics. Furthermore, our method can also be integrated with existing methods to improve their social responsibility. Extensive experiments on benchmark datasets demonstrate that our method can effectively reduce NSFW content and mitigate social bias generated by diffusion models compared to several state-of-the-art baselines.
Abstract:Text-to-image (T2I) diffusion models have gained widespread application across various domains, demonstrating remarkable creative potential. However, the strong generalization capabilities of these models can inadvertently led they to generate NSFW content even with efforts on filtering NSFW content from the training dataset, posing risks to their safe deployment. While several concept erasure methods have been proposed to mitigate this issue, a comprehensive evaluation of their effectiveness remains absent. To bridge this gap, we present the first systematic investigation of concept erasure methods for NSFW content and its sub-themes in text-to-image diffusion models. At the task level, we provide a holistic evaluation of 11 state-of-the-art baseline methods with 14 variants. Specifically, we analyze these methods from six distinct assessment perspectives, including three conventional perspectives, i.e., erasure proportion, image quality, and semantic alignment, and three new perspectives, i.e., excessive erasure, the impact of explicit and implicit unsafe prompts, and robustness. At the tool level, we perform a detailed toxicity analysis of NSFW datasets and compare the performance of different NSFW classifiers, offering deeper insights into their performance alongside a compilation of comprehensive evaluation metrics. Our benchmark not only systematically evaluates concept erasure methods, but also delves into the underlying factors influencing their performance at the insight level. By synthesizing insights from various evaluation perspectives, we provide a deeper understanding of the challenges and opportunities in the field, offering actionable guidance and inspiration for advancing research and practical applications in concept erasure.
Abstract:Text-to-image diffusion models have shown the ability to learn a diverse range of concepts. However, it is worth noting that they may also generate undesirable outputs, consequently giving rise to significant security concerns. Specifically, issues such as Not Safe for Work (NSFW) content and potential violations of style copyright may be encountered. Since image generation is conditioned on text, prompt purification serves as a straightforward solution for content safety. Similar to the approach taken by LLM, some efforts have been made to control the generation of safe outputs by purifying prompts. However, it is also important to note that even with these efforts, non-toxic text still carries a risk of generating non-compliant images, which is referred to as implicit unsafe prompts. Furthermore, some existing works fine-tune the models to erase undesired concepts from model weights. This type of method necessitates multiple training iterations whenever the concept is updated, which can be time-consuming and may potentially lead to catastrophic forgetting. To address these challenges, we propose a simple yet effective approach that incorporates non-compliant concepts into an erasure prompt. This erasure prompt proactively participates in the fusion of image spatial features and text embeddings. Through attention mechanisms, our method is capable of identifying feature representations of non-compliant concepts in the image space. We re-weight these features to effectively suppress the generation of unsafe images conditioned on original implicit unsafe prompts. Our method exhibits superior erasure effectiveness while achieving high scores in image fidelity compared to the state-of-the-art baselines. WARNING: This paper contains model outputs that may be offensive.