Abstract:Temporal point processes (TPPs) have emerged as powerful tools for modeling asynchronous event sequences. While recent advances have extended TPPs to handle textual information, existing approaches are limited in their ability to generate rich, multimodal content and reason about event dynamics. A key challenge is that incorporating multimodal data dramatically increases sequence length, hindering the ability of attention-based models to generate coherent, long-form textual descriptions that require long-range understanding. In this paper, we propose a novel framework that extends LLM-based TPPs to the visual modality, positioning text generation as a core capability alongside time and type prediction. Our approach addresses the long-context problem through an adaptive sequence compression mechanism based on temporal similarity, which reduces sequence length while preserving essential patterns. We employ a two-stage paradigm of pre-training on compressed sequences followed by supervised fine-tuning for downstream tasks. Extensive experiments, including on the challenging DanmakuTPP-QA benchmark, demonstrate that our method outperforms state-of-the-art baselines in both predictive accuracy and the quality of its generated textual analyses.
Abstract:We introduce DanmakuTPPBench, a comprehensive benchmark designed to advance multi-modal Temporal Point Process (TPP) modeling in the era of Large Language Models (LLMs). While TPPs have been widely studied for modeling temporal event sequences, existing datasets are predominantly unimodal, hindering progress in models that require joint reasoning over temporal, textual, and visual information. To address this gap, DanmakuTPPBench comprises two complementary components: (1) DanmakuTPP-Events, a novel dataset derived from the Bilibili video platform, where user-generated bullet comments (Danmaku) naturally form multi-modal events annotated with precise timestamps, rich textual content, and corresponding video frames; (2) DanmakuTPP-QA, a challenging question-answering dataset constructed via a novel multi-agent pipeline powered by state-of-the-art LLMs and multi-modal LLMs (MLLMs), targeting complex temporal-textual-visual reasoning. We conduct extensive evaluations using both classical TPP models and recent MLLMs, revealing significant performance gaps and limitations in current methods' ability to model multi-modal event dynamics. Our benchmark establishes strong baselines and calls for further integration of TPP modeling into the multi-modal language modeling landscape. The code and dataset have been released at https://github.com/FRENKIE-CHIANG/DanmakuTPPBench