Abstract:This paper makes a step towards modeling the modality discrepancy in the cross-spectral re-identification task. Based on the Lambertain model, we observe that the non-linear modality discrepancy mainly comes from diverse linear transformations acting on the surface of different materials. From this view, we unify all data augmentation strategies for cross-spectral re-identification by mimicking such local linear transformations and categorizing them into moderate transformation and radical transformation. By extending the observation, we propose a Random Linear Enhancement (RLE) strategy which includes Moderate Random Linear Enhancement (MRLE) and Radical Random Linear Enhancement (RRLE) to push the boundaries of both types of transformation. Moderate Random Linear Enhancement is designed to provide diverse image transformations that satisfy the original linear correlations under constrained conditions, whereas Radical Random Linear Enhancement seeks to generate local linear transformations directly without relying on external information. The experimental results not only demonstrate the superiority and effectiveness of RLE but also confirm its great potential as a general-purpose data augmentation for cross-spectral re-identification. The code is available at \textcolor{magenta}{\url{https://github.com/stone96123/RLE}}.
Abstract:Large-scale visual-language pre-trained models (VLPMs) have demonstrated exceptional performance in downstream object detection through text prompts for natural scenes. However, their application to zero-shot nuclei detection on histopathology images remains relatively unexplored, mainly due to the significant gap between the characteristics of medical images and the web-originated text-image pairs used for pre-training. This paper aims to investigate the potential of the object-level VLPM, Grounded Language-Image Pre-training (GLIP), for zero-shot nuclei detection. Specifically, we propose an innovative auto-prompting pipeline, named AttriPrompter, comprising attribute generation, attribute augmentation, and relevance sorting, to avoid subjective manual prompt design. AttriPrompter utilizes VLPMs' text-to-image alignment to create semantically rich text prompts, which are then fed into GLIP for initial zero-shot nuclei detection. Additionally, we propose a self-trained knowledge distillation framework, where GLIP serves as the teacher with its initial predictions used as pseudo labels, to address the challenges posed by high nuclei density, including missed detections, false positives, and overlapping instances. Our method exhibits remarkable performance in label-free nuclei detection, outperforming all existing unsupervised methods and demonstrating excellent generality. Notably, this work highlights the astonishing potential of VLPMs pre-trained on natural image-text pairs for downstream tasks in the medical field as well. Code will be released at https://github.com/wuyongjianCODE/AttriPrompter.
Abstract:Extracting robust feature representation is critical for object re-identification to accurately identify objects across non-overlapping cameras. Although having a strong representation ability, the Vision Transformer (ViT) tends to overfit on most distinct regions of training data, limiting its generalizability and attention to holistic object features. Meanwhile, due to the structural difference between CNN and ViT, fine-grained strategies that effectively address this issue in CNN do not continue to be successful in ViT. To address this issue, by observing the latent diverse representation hidden behind the multi-head attention, we present PartFormer, an innovative adaptation of ViT designed to overcome the granularity limitations in object Re-ID tasks. The PartFormer integrates a Head Disentangling Block (HDB) that awakens the diverse representation of multi-head self-attention without the typical loss of feature richness induced by concatenation and FFN layers post-attention. To avoid the homogenization of attention heads and promote robust part-based feature learning, two head diversity constraints are imposed: attention diversity constraint and correlation diversity constraint. These constraints enable the model to exploit diverse and discriminative feature representations from different attention heads. Comprehensive experiments on various object Re-ID benchmarks demonstrate the superiority of the PartFormer. Specifically, our framework significantly outperforms state-of-the-art by 2.4\% mAP scores on the most challenging MSMT17 dataset.
Abstract:Prompt tuning methods have achieved remarkable success in parameter-efficient fine-tuning on large pre-trained models. However, their application to dual-modal fusion-based visual-language pre-trained models (VLPMs), such as GLIP, has encountered issues. Existing prompt tuning methods have not effectively addressed the modal mapping and aligning problem for tokens in different modalities, leading to poor transfer generalization. To address this issue, we propose Synchronous Dual Prompt Tuning (SDPT). SDPT initializes a single set of learnable unified prototype tokens in the established modal aligning space to represent the aligned semantics of text and image modalities for downstream tasks. Furthermore, SDPT establishes inverse linear projections that require no training to embed the information of unified prototype tokens into the input space of different modalities. The inverse linear projections allow the unified prototype token to synchronously represent the two modalities and enable SDPT to share the unified semantics of text and image for downstream tasks across different modal prompts. Experimental results demonstrate that SDPT assists fusion-based VLPMs to achieve superior outcomes with only 0.04\% of model parameters for training across various scenarios, outperforming other single- or dual-modal methods. The code will be released at https://github.com/wuyongjianCODE/SDPT.
Abstract:This paper explores a novel dynamic network for vision and language tasks, where the inferring structure is customized on the fly for different inputs. Most previous state-of-the-art approaches are static and hand-crafted networks, which not only heavily rely on expert knowledge, but also ignore the semantic diversity of input samples, therefore resulting in suboptimal performance. To address these issues, we propose a novel Dynamic Transformer Network (DTNet) for image captioning, which dynamically assigns customized paths to different samples, leading to discriminative yet accurate captions. Specifically, to build a rich routing space and improve routing efficiency, we introduce five types of basic cells and group them into two separate routing spaces according to their operating domains, i.e., spatial and channel. Then, we design a Spatial-Channel Joint Router (SCJR), which endows the model with the capability of path customization based on both spatial and channel information of the input sample. To validate the effectiveness of our proposed DTNet, we conduct extensive experiments on the MS-COCO dataset and achieve new state-of-the-art performance on both the Karpathy split and the online test server.
Abstract:Large-scale visual-language pre-trained models (VLPM) have proven their excellent performance in downstream object detection for natural scenes. However, zero-shot nuclei detection on H\&E images via VLPMs remains underexplored. The large gap between medical images and the web-originated text-image pairs used for pre-training makes it a challenging task. In this paper, we attempt to explore the potential of the object-level VLPM, Grounded Language-Image Pre-training (GLIP) model, for zero-shot nuclei detection. Concretely, an automatic prompts design pipeline is devised based on the association binding trait of VLPM and the image-to-text VLPM BLIP, avoiding empirical manual prompts engineering. We further establish a self-training framework, using the automatically designed prompts to generate the preliminary results as pseudo labels from GLIP and refine the predicted boxes in an iterative manner. Our method achieves a remarkable performance for label-free nuclei detection, surpassing other comparison methods. Foremost, our work demonstrates that the VLPM pre-trained on natural image-text pairs exhibits astonishing potential for downstream tasks in the medical field as well. Code will be released at https://github.com/wuyongjianCODE/VLPMNuD.
Abstract:Nuclei instance segmentation on histopathology images is of great clinical value for disease analysis. Generally, fully-supervised algorithms for this task require pixel-wise manual annotations, which is especially time-consuming and laborious for the high nuclei density. To alleviate the annotation burden, we seek to solve the problem through image-level weakly supervised learning, which is underexplored for nuclei instance segmentation. Compared with most existing methods using other weak annotations (scribble, point, etc.) for nuclei instance segmentation, our method is more labor-saving. The obstacle to using image-level annotations in nuclei instance segmentation is the lack of adequate location information, leading to severe nuclei omission or overlaps. In this paper, we propose a novel image-level weakly supervised method, called cyclic learning, to solve this problem. Cyclic learning comprises a front-end classification task and a back-end semi-supervised instance segmentation task to benefit from multi-task learning (MTL). We utilize a deep learning classifier with interpretability as the front-end to convert image-level labels to sets of high-confidence pseudo masks and establish a semi-supervised architecture as the back-end to conduct nuclei instance segmentation under the supervision of these pseudo masks. Most importantly, cyclic learning is designed to circularly share knowledge between the front-end classifier and the back-end semi-supervised part, which allows the whole system to fully extract the underlying information from image-level labels and converge to a better optimum. Experiments on three datasets demonstrate the good generality of our method, which outperforms other image-level weakly supervised methods for nuclei instance segmentation, and achieves comparable performance to fully-supervised methods.
Abstract:Deep neural networks have been applied in many computer vision tasks and achieved state-of-the-art performance. However, misclassification will occur when DNN predicts adversarial examples which add human-imperceptible adversarial noise to natural examples. This limits the application of DNN in security-critical fields. To alleviate this problem, we first conducted an empirical analysis of the latent features of both adversarial and natural examples and found the similarity matrix of natural examples is more compact than those of adversarial examples. Motivated by this observation, we propose \textbf{L}atent \textbf{F}eature \textbf{R}elation \textbf{C}onsistency (\textbf{LFRC}), which constrains the relation of adversarial examples in latent space to be consistent with the natural examples. Importantly, our LFRC is orthogonal to the previous method and can be easily combined with them to achieve further improvement. To demonstrate the effectiveness of LFRC, we conduct extensive experiments using different neural networks on benchmark datasets. For instance, LFRC can bring 0.78\% further improvement compared to AT, and 1.09\% improvement compared to TRADES, against AutoAttack on CIFAR10. Code is available at https://github.com/liuxingbin/LFRC.
Abstract:Adversarial training can improve the robustness of neural networks. Previous methods focus on a single adversarial training strategy and do not consider the model property trained by different strategies. By revisiting the previous methods, we find different adversarial training methods have distinct robustness for sample instances. For example, a sample instance can be correctly classified by a model trained using standard adversarial training (AT) but not by a model trained using TRADES, and vice versa. Based on this observation, we propose a collaborative adversarial training framework to improve the robustness of neural networks. Specifically, we use different adversarial training methods to train robust models and let models interact with their knowledge during the training process. Collaborative Adversarial Training (CAT) can improve both robustness and accuracy. Extensive experiments on various networks and datasets validate the effectiveness of our method. CAT achieves state-of-the-art adversarial robustness without using any additional data on CIFAR-10 under the Auto-Attack benchmark. Code is available at https://github.com/liuxingbin/CAT.
Abstract:Occluded person re-identification (Re-ID) aims to address the potential occlusion problem when matching occluded or holistic pedestrians from different camera views. Many methods use the background as artificial occlusion and rely on attention networks to exclude noisy interference. However, the significant discrepancy between simple background occlusion and realistic occlusion can negatively impact the generalization of the network.To address this issue, we propose a novel transformer-based Attention Disturbance and Dual-Path Constraint Network (ADP) to enhance the generalization of attention networks. Firstly, to imitate real-world obstacles, we introduce an Attention Disturbance Mask (ADM) module that generates an offensive noise, which can distract attention like a realistic occluder, as a more complex form of occlusion.Secondly, to fully exploit these complex occluded images, we develop a Dual-Path Constraint Module (DPC) that can obtain preferable supervision information from holistic images through dual-path interaction. With our proposed method, the network can effectively circumvent a wide variety of occlusions using the basic ViT baseline. Comprehensive experimental evaluations conducted on person re-ID benchmarks demonstrate the superiority of ADP over state-of-the-art methods.