Abstract:Deception detection is a critical task in real-world applications such as security screening, fraud prevention, and credibility assessment. While deep learning methods have shown promise in surpassing human-level performance, their effectiveness often depends on the availability of high-quality and diverse deception samples. Existing research predominantly focuses on single-domain scenarios, overlooking the significant performance degradation caused by domain shifts. To address this gap, we present the SVC 2025 Multimodal Deception Detection Challenge, a new benchmark designed to evaluate cross-domain generalization in audio-visual deception detection. Participants are required to develop models that not only perform well within individual domains but also generalize across multiple heterogeneous datasets. By leveraging multimodal data, including audio, video, and text, this challenge encourages the design of models capable of capturing subtle and implicit deceptive cues. Through this benchmark, we aim to foster the development of more adaptable, explainable, and practically deployable deception detection systems, advancing the broader field of multimodal learning. By the conclusion of the workshop competition, a total of 21 teams had submitted their final results. https://sites.google.com/view/svc-mm25 for more information.
Abstract:Recently, 3D Gaussian Splatting (3DGS) has emerged as a prominent framework for novel view synthesis, providing high fidelity and rapid rendering speed. However, the substantial data volume of 3DGS and its attributes impede its practical utility, requiring compression techniques for reducing memory cost. Nevertheless, the unorganized shape of 3DGS leads to difficulties in compression. To formulate unstructured attributes into normative distribution, we propose a well-structured tri-plane to encode Gaussian attributes, leveraging the distribution of attributes for compression. To exploit the correlations among adjacent Gaussians, K-Nearest Neighbors (KNN) is used when decoding Gaussian distribution from the Tri-plane. We also introduce Gaussian position information as a prior of the position-sensitive decoder. Additionally, we incorporate an adaptive wavelet loss, aiming to focus on the high-frequency details as iterations increase. Our approach has achieved results that are comparable to or surpass that of SOTA 3D Gaussians Splatting compression work in extensive experiments across multiple datasets. The codes are released at https://github.com/timwang2001/TC-GS.