Abstract:Named entity recognition (NER) is evolving from a sequence labeling task into a generative paradigm with the rise of large language models (LLMs). We conduct a systematic evaluation of open-source LLMs on both flat and nested NER tasks. We investigate several research questions including the performance gap between generative NER and traditional NER models, the impact of output formats, whether LLMs rely on memorization, and the preservation of general capabilities after fine-tuning. Through experiments across eight LLMs of varying scales and four standard NER datasets, we find that: (1) With parameter-efficient fine-tuning and structured formats like inline bracketed or XML, open-source LLMs achieve performance competitive with traditional encoder-based models and surpass closed-source LLMs like GPT-3; (2) The NER capability of LLMs stems from instruction-following and generative power, not mere memorization of entity-label pairs; and (3) Applying NER instruction tuning has minimal impact on general capabilities of LLMs, even improving performance on datasets like DROP due to enhanced entity understanding. These findings demonstrate that generative NER with LLMs is a promising, user-friendly alternative to traditional methods. We release the data and code at https://github.com/szu-tera/LLMs4NER.
Abstract:Traditional sentence embedding methods employ token-level contrastive learning on non-generative pre-trained models. Recently, there have emerged embedding methods based on generative large language models (LLMs). These methods either rely on fixed prompt templates or involve modifications to the model architecture. The former lacks further optimization of the model and results in limited performance, while the latter alters the internal computational mechanisms of the model, thereby compromising its generative capabilities. We propose SemPA, a novel approach that boosts the sentence representations while preserving the generative ability of LLMs via semantic preference alignment. We leverage sentence-level Direct Preference Optimization (DPO) to efficiently optimize LLMs on a paraphrase generation task, where the model learns to discriminate semantically equivalent sentences while preserving inherent generative capacity. Theoretically, we establish a formal connection between DPO and contrastive learning under the Plackett-Luce model framework. Empirically, experimental results on both semantic textual similarity tasks and various benchmarks for LLMs show that SemPA achieves better semantic representations without sacrificing the inherent generation capability of LLMs.




Abstract:Test-time reinforcement learning mitigates the reliance on annotated data by using majority voting results as pseudo-labels, emerging as a complementary direction to reinforcement learning with verifiable rewards (RLVR) for improving reasoning ability of large language models (LLMs). However, this voting strategy often induces confirmation bias and suffers from sparse rewards, limiting the overall performance. In this work, we propose subgroup-specific step-wise confidence-weighted pseudo-label estimation (SCOPE), a framework integrating model confidence and dynamic subgroup partitioning to address these issues. Specifically, SCOPE integrates the proposed step-wise confidence into pseudo label deduction, prioritizing high-quality reasoning paths over simple frequency count. Furthermore, it dynamically partitions the candidate outputs pool into independent subgroups by balancing reasoning quality against exploration diversity. By deriving local consensus via repeat sampling for each sub group, SCOPE provides diverse supervision targets to encourage broader exploration. We conduct experiments across various models and benchmarks, experimental results show that SCOPE consistently outperforms recent baselines. Notably, SCOPE achieving relative improvements of 13.1% on challenging AIME 2025 and 8.1% on AMC. The code is released at https://github.com/szu-tera/SCOPE.
Abstract:Majority voting is considered an effective method to enhance chain-of-thought reasoning, as it selects the answer with the highest "self-consistency" among different reasoning paths (Wang et al., 2023). However, previous chain-of-thought reasoning methods typically generate only a single answer in each trial, thereby ignoring the possibility of other potential answers. As a result, these alternative answers are often overlooked in subsequent voting processes. In this work, we propose to generate ranked answers in each reasoning process and conduct ranked voting among multiple ranked answers from different responses, thereby making the overall self-consistency more reliable. Specifically, we use three ranked voting methods: Instant-runoff voting, Borda count voting, and mean reciprocal rank voting. We validate our methods on six datasets, including three multiple-choice and three open-ended question-answering tasks, using both advanced open-source and closed-source large language models. Extensive experimental results indicate that our proposed method outperforms the baselines, showcasing the potential of leveraging the information of ranked answers and using ranked voting to improve reasoning performance. The code is available at https://github.com/szu-tera/RankedVotingSC.
Abstract:Semantic text representation is a fundamental task in the field of natural language processing. Existing text embedding (e.g., SimCSE and LLM2Vec) have demonstrated excellent performance, but the values of each dimension are difficult to trace and interpret. Bag-of-words, as classic sparse interpretable embeddings, suffers from poor performance. Recently, Benara et al. (2024) propose interpretable text embeddings using large language models, which forms "0/1" embeddings based on responses to a series of questions. These interpretable text embeddings are typically high-dimensional (larger than 10,000). In this work, we propose Low-dimensional (lower than 500) Dense and Interpretable text embeddings with Relative representations (LDIR). The numerical values of its dimensions indicate semantic relatedness to different anchor texts through farthest point sampling, offering both semantic representation as well as a certain level of traceability and interpretability. We validate LDIR on multiple semantic textual similarity, retrieval, and clustering tasks. Extensive experimental results show that LDIR performs close to the black-box baseline models and outperforms the interpretable embeddings baselines with much fewer dimensions. Code is available at https://github.com/szu-tera/LDIR.




Abstract:Large language models (LLMs) have revolutionized the field of natural language processing, enabling remarkable progress in various tasks. Different from objective tasks such as commonsense reasoning and arithmetic question-answering, the performance of LLMs on subjective tasks is still limited, where the perspective on the specific problem plays crucial roles for better interpreting the context and giving proper response. For example, in certain scenarios, LLMs may perform better when answering from an expert role perspective, potentially eliciting their relevant domain knowledge. In contrast, in some scenarios, LLMs may provide more accurate responses when answering from a third-person standpoint, enabling a more comprehensive understanding of the problem and potentially mitigating inherent biases. In this paper, we propose Reasoning through Perspective Transition (RPT), a method based on in-context learning that enables LLMs to dynamically select among direct, role, and third-person perspectives for the best way to solve corresponding subjective problem. Through extensive experiments on totally 12 subjective tasks by using both closed-source and open-source LLMs including GPT-4, GPT-3.5, Llama-3, and Qwen-2, our method outperforms widely used single fixed perspective based methods such as chain-of-thought prompting and expert prompting, highlights the intricate ways that LLMs can adapt their perspectives to provide nuanced and contextually appropriate responses for different problems.
Abstract:Large language models (LLMs) are widely applied in various natural language processing tasks such as question answering and machine translation. However, due to the lack of labeled data and the difficulty of manual annotation for biochemical properties, the performance for molecule generation tasks is still limited, especially for tasks involving multi-properties constraints. In this work, we present a two-step framework PEIT (Property Enhanced Instruction Tuning) to improve LLMs for molecular-related tasks. In the first step, we use textual descriptions, SMILES, and biochemical properties as multimodal inputs to pre-train a model called PEIT-GEN, by aligning multi-modal representations to synthesize instruction data. In the second step, we fine-tune existing open-source LLMs with the synthesized data, the resulting PEIT-LLM can handle molecule captioning, text-based molecule generation, molecular property prediction, and our newly proposed multi-constraint molecule generation tasks. Experimental results show that our pre-trained PEIT-GEN outperforms MolT5 and BioT5 in molecule captioning, demonstrating modalities align well between textual descriptions, structures, and biochemical properties. Furthermore, PEIT-LLM shows promising improvements in multi-task molecule generation, proving the scalability of the PEIT framework for various molecular tasks. We release the code, constructed instruction data, and model checkpoints in https://github.com/chenlong164/PEIT.
Abstract:Deep convolutional neural networks (DCNNs) have demonstrated excellent performance in object recognition and have been found to share some similarities with brain visual processing. However, the substantial gap between DCNNs and human visual perception still exists. Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception. Can we teach DCNNs human fMRI signals to achieve a more brain-like model? To answer this question, this study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework. This framework has been shown to effectively enable the model to learn human brain representations. The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG) alignment evaluations. Additionally, we conducted an in-depth analyses to investigate how the internal representations of ReAlnet-fMRI differ from CORnet in encoding various object dimensions. These findings provide the possibility of enhancing the brain-likeness of visual models by integrating human neural data, helping to bridge the gap between computer vision and visual neuroscience.




Abstract:Large Language Models (LLMs) have achieved remarkable performance in objective tasks such as open-domain question answering and mathematical reasoning, which can often be solved through recalling learned factual knowledge or chain-of-thought style reasoning. However, we find that the performance of LLMs in subjective tasks is still unsatisfactory, such as metaphor recognition, dark humor detection, etc. Compared to objective tasks, subjective tasks focus more on interpretation or emotional response rather than a universally accepted reasoning pathway. Based on the characteristics of the tasks and the strong dialogue-generation capabilities of LLMs, we propose RiC (Reasoning in Conversation), a method that focuses on solving subjective tasks through dialogue simulation. The motivation of RiC is to mine useful contextual information by simulating dialogues instead of supplying chain-of-thought style rationales, thereby offering potential useful knowledge behind dialogues for giving the final answers. We evaluate both API-based and open-source LLMs including GPT-4, ChatGPT, and OpenChat across twelve tasks. Experimental results show that RiC can yield significant improvement compared with various baselines.
Abstract:Recent work has made a preliminary attempt to use large language models (LLMs) to solve the stance detection task, showing promising results. However, considering that stance detection usually requires detailed background knowledge, the vanilla reasoning method may neglect the domain knowledge to make a professional and accurate analysis. Thus, there is still room for improvement of LLMs reasoning, especially in leveraging the generation capability of LLMs to simulate specific experts (i.e., multi-agents) to detect the stance. In this paper, different from existing multi-agent works that require detailed descriptions and use fixed experts, we propose a Dynamic Experienced Expert Modeling (DEEM) method which can leverage the generated experienced experts and let LLMs reason in a semi-parametric way, making the experts more generalizable and reliable. Experimental results demonstrate that DEEM consistently achieves the best results on three standard benchmarks, outperforms methods with self-consistency reasoning, and reduces the bias of LLMs.