Abstract:In this paper, we provide an analytical study of single-carrier faster-than-Nyquist (FTN) signaling for integrated sensing and communications (ISAC). Our derivations show that FTN is advantageous for ISAC, and reveal new insights that these advantages come from the fact that FTN signaling can effectively avoid the spectral aliasing due to the mismatch between the symbol rate and the bandwidth of the shaping pulse. Specifically, the communication spectral efficiency advantages of FTN signaling over time-invariant multipath channels are analytically shown, where both upper- and lower-bounds on the spectral efficiency are derived. We show that the gap between these two bounds corresponds to the potential signal-to-noise ratio (SNR) variation due to the presence of multipath delay and spectral aliasing, which diminishes as the symbol rate grows higher. Particularly, in the limiting case, this SNR variation disappears while the degree of freedom (DoF) of the system attain the maximum. Furthermore, the sensing advantages for FTN signals are verified in terms of the expected normalized squared ambiguity function. We show that FTN signals generally enjoy a more robust ranging performance. More importantly, we prove that FTN signaling can effectively avoid the undesired peaks in the considered ambiguity function along the Doppler dimension, thereby reducing the ambiguities in velocity estimation. All these conclusions are explicitly verified by numerical results.
Abstract:Accurate radar cross section (RCS) modeling is crucial for characterizing target scattering and improving the precision of Integrated Sensing and Communication (ISAC) channel modeling. Existing RCS models are typically designed for specific target types, leading to increased complexity and lack of generalization. This makes it difficult to standardize RCS models for 3GPP ISAC channels, which need to account for multiple typical target types simultaneously. Furthermore, 3GPP models must support both system-level and link-level simulations, requiring the integration of large-scale and small-scale scattering characteristics. To address these challenges, this paper proposes a unified RCS modeling framework that consolidates these two aspects. The model decomposes RCS into three components: (1) a large-scale power factor representing overall scattering strength, (2) a small-scale angular-dependent component describing directional scattering, and (3) a random component accounting for variations across target instances. We validate the model through mono-static RCS measurements for UAV, human, and vehicle targets across five frequency bands. The results demonstrate that the proposed model can effectively capture RCS variations for different target types. Finally, the model is incorporated into an ISAC channel simulation platform to assess the impact of target RCS characteristics on path loss, delay spread, and angular spread, providing valuable insights for future ISAC system design.
Abstract:Communication-centric Integrated Sensing and Communication (ISAC) has been recognized as a promising methodology to implement wireless sensing functionality over existing network architectures, due to its cost-effectiveness and backward compatibility to legacy cellular systems. However, the inherent randomness of the communication signal may incur huge fluctuations in sensing capabilities, leading to unfavorable detection and estimation performance. To address this issue, we elaborate on random ISAC signal processing methods in this article, aiming at improving the sensing performance without unduly deteriorating the communication functionality. Specifically, we commence by discussing the fundamentals of sensing with random communication signals, including the performance metrics and optimal ranging waveforms. Building on these concepts, we then present a general framework for random ISAC signal transmission, followed by an in-depth exploration of time-domain pulse shaping, frequency-domain constellation shaping, and spatial-domain precoding methods. We provide a comprehensive overview of each of these topics, including models, results, and design guidelines. Finally, we conclude this article by identifying several promising research directions for random ISAC signal transmission.
Abstract:Integrated Sensing and Communications (ISAC) is expected to play a pivotal role in future 6G networks. To maximize time-frequency resource utilization, 6G ISAC systems must exploit data payload signals, that are inherently random, for both communication and sensing tasks. This paper provides a comprehensive analysis of the sensing performance of such communication-centric ISAC signals, with a focus on modulation and pulse shaping design to reshape the statistical properties of their auto-correlation functions (ACFs), thereby improving the target ranging performance. We derive a closed-form expression for the expectation of the squared ACF of random ISAC signals, considering arbitrary modulation bases and constellation mappings within the Nyquist pulse shaping framework. The structure is metaphorically described as an ``iceberg hidden in the sea", where the ``iceberg'' represents the squared mean of the ACF of random ISAC signals, that is determined by the pulse shaping filter, and the ``sea level'' characterizes the corresponding variance, caused by the randomness of the data payload. Our analysis shows that, for QAM/PSK constellations with Nyquist pulse shaping, Orthogonal Frequency Division Multiplexing (OFDM) achieves the lowest ranging sidelobe level across all lags. Building on these insights, we propose a novel Nyquist pulse shaping design to enhance the sensing performance of random ISAC signals. Numerical results validate our theoretical findings, showing that the proposed pulse shaping significantly reduces ranging sidelobes compared to conventional root-raised cosine (RRC) pulse shaping, thereby improving the ranging performance.
Abstract:Integrated sensing and communications (ISAC) has emerged as a pivotal enabling technology for next-generation wireless networks. Despite the distinct signal design requirements of sensing and communication (S&C) systems, shifting the symbol-wise pulse shaping (SWiPS) framework from communication-only systems to ISAC poses significant challenges in signal design and processing This paper addresses these challenges by examining the ambiguity function (AF) of the SWiPS ISAC signal and introducing a novel pulse shaping design for single-carrier ISAC transmission. We formulate optimization problems to minimize the average integrated sidelobe level (ISL) of the AF, as well as the weighted ISL (WISL) while satisfying inter-symbol interference (ISI), out-of-band emission (OOBE), and power constraints. Our contributions include establishing the relationship between the AFs of both the random data symbols and signaling pulses, analyzing the statistical characteristics of the AF, and developing algorithmic frameworks for pulse shaping optimization using successive convex approximation (SCA) and alternating direction method of multipliers (ADMM) approaches. Numerical results are provided to validate our theoretical analysis, which demonstrate significant performance improvements in the proposed SWiPS design compared to the root-raised cosine (RRC) pulse shaping for conventional communication systems.
Abstract:This paper aims to answer a fundamental question in the area of Integrated Sensing and Communications (ISAC): What is the optimal communication-centric ISAC waveform for ranging? Towards that end, we first established a generic framework to analyze the sensing performance of communication-centric ISAC waveforms built upon orthonormal signaling bases and random data symbols. Then, we evaluated their ranging performance by adopting both the periodic and aperiodic auto-correlation functions (P-ACF and A-ACF), and defined the expectation of the integrated sidelobe level (EISL) as a sensing performance metric. On top of that, we proved that among all communication waveforms with cyclic prefix (CP), the orthogonal frequency division multiplexing (OFDM) modulation is the only globally optimal waveform that achieves the lowest ranging sidelobe for quadrature amplitude modulation (QAM) and phase shift keying (PSK) constellations, in terms of both the EISL and the sidelobe level at each individual lag of the P-ACF. As a step forward, we proved that among all communication waveforms without CP, OFDM is a locally optimal waveform for QAM/PSK in the sense that it achieves a local minimum of the EISL of the A-ACF. Finally, we demonstrated by numerical results that under QAM/PSK constellations, there is no other orthogonal communication-centric waveform that achieves a lower ranging sidelobe level than that of the OFDM, in terms of both P-ACF and A-ACF cases.
Abstract:In this paper, we propose a novel pulse shaping design for single-carrier integrated sensing and communication (ISAC) transmission. Due to the communication information embedded in the ISAC signal, the resulting auto-correlation function (ACF) is determined by both the information-conveying random symbol sequence and the signaling pulse, where the former leads to random fluctuations in the sidelobes of the ACF, impairing the range estimation performance. To overcome this challenge, we first analyze the statistical characteristics of the random ACF under the symbol-wise pulse shaping (SWPS) regime. As a step further, we formulate an optimization problem to design ISAC pulse shaping filters, which minimizes the average integrated sidelobe level ratio (ISLR) while meeting the Nyquist criterion, subject to power and bandwidth constraints. We then show that the problem can be recast as a convex quadratic program by expressing it in the frequency domain, which can be readily solved through standard tools. Numerical results demonstrate that the proposed pulse shaping design achieves substantial ranging sidelobe reduction compared to the celebrated root-raised cosine (RRC) pulse shaping, given that the communication throughput is unchanged.
Abstract:Integrated sensing and communication (ISAC) system stands out as a pivotal usage scenario of 6G. To explore the coordination gains offered by the ISAC technique, this paper introduces a novel communication-assisted sensing (CAS) system. The CAS system can endow users with beyond-line-of-sight sensing capability, wherein the base station with favorable visibility senses device-free targets, simultaneously transmitting the acquired sensory information to users. Within the CAS framework, we characterize the fundamental limits to reveal the achievable distortion between the state of the targets of interest and their reconstruction at the users' end. Finally, within the confines of this theoretical framework, we employ a typical application as an illustrative example to demonstrate the minimization of distortion through dual-functional waveform design, showcasing the potential of CAS in enhancing sensing capabilities.
Abstract:This document contains the appendices for our paper titled ``Performance Bounds for Passive Sensing in Asynchronous ISAC Systems." The appendices include rigorous derivations of key formulas, detailed proofs of the theorems and propositions introduced in the paper, and details of the algorithm tested in the numerical simulation for validation. These appendices aim to support and elaborate on the findings and methodologies presented in the main text. All external references to equations, theorems, and so forth, are directed towards the corresponding elements within the main paper.
Abstract:In this paper, we present a signaling design for secure integrated sensing and communication (ISAC) systems comprising a dual-functional multi-input multi-output (MIMO) base station (BS) that simultaneously communicates with multiple users while detecting targets present in their vicinity, which are regarded as potential eavesdroppers. In particular, assuming that the distribution of each parameter to be estimated is known \textit{a priori}, we focus on optimizing the targets' sensing performance. To this end, we derive and minimize the Bayesian Cram\'er-Rao bound (BCRB), while ensuring certain communication quality of service (QoS) by exploiting constructive interference (CI). The latter scheme enforces that the received signals at the eavesdropping targets fall into the destructive region of the signal constellation, to deteriorate their decoding probability, thus enhancing the ISAC's system physical-layer security (PLS) capability. To tackle the nonconvexity of the formulated problem, a tailored successive convex approximation method is proposed for its efficient solution. Our extensive numerical results verify the effectiveness of the proposed secure ISAC design showing that the proposed algorithm outperforms block-level precoding techniques.