Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Yiping Wang, Yifang Chen, Wendan Yan, Kevin Jamieson, Simon Shaolei Du

In recent years, data selection has emerged as a core issue for large-scale visual-language model pretraining, especially on noisy web-curated datasets. One widely adopted strategy assigns quality scores such as CLIP similarity for each sample and retains the data pairs with the highest scores. However, these approaches are agnostic of data distribution and always fail to select the most informative samples. To solve this problem, we propose a simple yet theoretically principled metric named Variance Alignment Score (VAS), which has the form $\langle \Sigma_{\text{test}}, \Sigma_i\rangle$. Here, $\Sigma_{\text{test}}$ represents the target (cross-)covariance matrix we aim to align, potentially based on prior knowledge, while $\Sigma_i$ denotes the tensor product of single or multi-modal representations for the $i$-th sample. We further design a new data selection method that maximizes the total VAS. We provide theoretical analysis in a simplified setting to demonstrate the theoretical advantage of VAS over random or other existing data selection. Experimentally, applying VAS and CLIP scores together can outperform baselines by a margin of $1.3\%$ average on 38 evaluation sets for noisy dataset DataComp and $2.5\%$ on VTAB for high-quality dataset CC12M. Additionally, our ablation study also shows visual features are better than text for calculating VAS, and the related classical experimental design methods may fail under this context.

Via

Gantavya Bhatt, Yifang Chen, Arnav M. Das, Jifan Zhang, Sang T. Truong, Stephen Mussmann, Yinglun Zhu, Jeffrey Bilmes, Simon S. Du, Kevin Jamieson, Jordan T. Ash, Robert D. Nowak

Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, our methods achieve the same generalization performance with only $50\%$ of annotation cost required by random sampling.

Via

Jifan Zhang, Yifang Chen, Gregory Canal, Stephen Mussmann, Yinglun Zhu, Simon Shaolei Du, Kevin Jamieson, Robert D Nowak

Labeled data are critical to modern machine learning applications, but obtaining labels can be expensive. To mitigate this cost, machine learning methods, such as transfer learning, semi-supervised learning and active learning, aim to be label-efficient: achieving high predictive performance from relatively few labeled examples. While obtaining the best label-efficiency in practice often requires combinations of these techniques, existing benchmark and evaluation frameworks do not capture a concerted combination of all such techniques. This paper addresses this deficiency by introducing LabelBench, a new computationally-efficient framework for joint evaluation of multiple label-efficient learning techniques. As an application of LabelBench, we introduce a novel benchmark of state-of-the-art active learning methods in combination with semi-supervised learning for fine-tuning pretrained vision transformers. Our benchmark demonstrates better label-efficiencies than previously reported in active learning. LabelBench's modular codebase is open-sourced for the broader community to contribute label-efficient learning methods and benchmarks. The repository can be found at: https://github.com/EfficientTraining/LabelBench.

Via

Yifang Chen, Yingbing Huang, Simon S. Du, Kevin Jamieson, Guanya Shi

Representation learning based on multi-task pretraining has become a powerful approach in many domains. In particular, task-aware representation learning aims to learn an optimal representation for a specific target task by sampling data from a set of source tasks, while task-agnostic representation learning seeks to learn a universal representation for a class of tasks. In this paper, we propose a general and versatile algorithmic and theoretic framework for \textit{active representation learning}, where the learner optimally chooses which source tasks to sample from. This framework, along with a tractable meta algorithm, allows most arbitrary target and source task spaces (from discrete to continuous), covers both task-aware and task-agnostic settings, and is compatible with deep representation learning practices. We provide several instantiations under this framework, from bilinear and feature-based nonlinear to general nonlinear cases. In the bilinear case, by leveraging the non-uniform spectrum of the task representation and the calibrated source-target relevance, we prove that the sample complexity to achieve $\varepsilon$-excess risk on target scales with $ (k^*)^2 \|v^*\|_2^2 \varepsilon^{-2}$ where $k^*$ is the effective dimension of the target and $\|v^*\|_2^2 \in (0,1]$ represents the connection between source and target space. Compared to the passive one, this can save up to $\frac{1}{d_W}$ of sample complexity, where $d_W$ is the task space dimension. Finally, we demonstrate different instantiations of our meta algorithm in synthetic datasets and robotics problems, from pendulum simulations to real-world drone flight datasets. On average, our algorithms outperform baselines by $20\%-70\%$.

Via

Yiping Wang, Yifang Chen, Kevin Jamieson, Simon S. Du

To leverage the copious amount of data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, most existing works design a source task selection strategy from a purely empirical perspective. Recently, \citet{chen2022active} gave the first active multi-task representation learning (A-MTRL) algorithm which adaptively samples from source tasks and can provably reduce the total sample complexity using the L2-regularized-target-source-relevance parameter $\nu^2$. But their work is theoretically suboptimal in terms of total source sample complexity and is less practical in some real-world scenarios where sparse training source task selection is desired. In this paper, we address both issues. Specifically, we show the strict dominance of the L1-regularized-relevance-based ($\nu^1$-based) strategy by giving a lower bound for the $\nu^2$-based strategy. When $\nu^1$ is unknown, we propose a practical algorithm that uses the LASSO program to estimate $\nu^1$. Our algorithm successfully recovers the optimal result in the known case. In addition to our sample complexity results, we also characterize the potential of our $\nu^1$-based strategy in sample-cost-sensitive settings. Finally, we provide experiments on real-world computer vision datasets to illustrate the effectiveness of our proposed method.

Via

Yifang Chen, Karthik Sankararaman, Alessandro Lazaric, Matteo Pirotta, Dmytro Karamshuk, Qifan Wang, Karishma Mandyam, Sinong Wang, Han Fang

Active learning with strong and weak labelers considers a practical setting where we have access to both costly but accurate strong labelers and inaccurate but cheap predictions provided by weak labelers. We study this problem in the streaming setting, where decisions must be taken \textit{online}. We design a novel algorithmic template, Weak Labeler Active Cover (WL-AC), that is able to robustly leverage the lower quality weak labelers to reduce the query complexity while retaining the desired level of accuracy. Prior active learning algorithms with access to weak labelers learn a difference classifier which predicts where the weak labels differ from strong labelers; this requires the strong assumption of realizability of the difference classifier (Zhang and Chaudhuri,2015). WL-AC bypasses this \textit{realizability} assumption and thus is applicable to many real-world scenarios such as random corrupted weak labels and high dimensional family of difference classifiers (\textit{e.g.,} deep neural nets). Moreover, WL-AC cleverly trades off evaluating the quality with full exploitation of weak labelers, which allows to convert any active learning strategy to one that can leverage weak labelers. We provide an instantiation of this template that achieves the optimal query complexity for any given weak labeler, without knowing its accuracy a-priori. Empirically, we propose an instantiation of the WL-AC template that can be efficiently implemented for large-scale models (\textit{e.g}., deep neural nets) and show its effectiveness on the corrupted-MNIST dataset by significantly reducing the number of labels while keeping the same accuracy as in passive learning.

Via

Mingyu Lu, Yifang Chen, Su-In Lee

Learning personalized cancer treatment with machine learning holds great promise to improve cancer patients' chance of survival. Despite recent advances in machine learning and precision oncology, this approach remains challenging as collecting data in preclinical/clinical studies for modeling multiple treatment efficacies is often an expensive, time-consuming process. Moreover, the randomization in treatment allocation proves to be suboptimal since some participants/samples are not receiving the most appropriate treatments during the trial. To address this challenge, we formulate drug screening study as a "contextual bandit" problem, in which an algorithm selects anticancer therapeutics based on contextual information about cancer cell lines while adapting its treatment strategy to maximize treatment response in an "online" fashion. We propose using a novel deep Bayesian bandits framework that uses functional prior to approximate posterior for drug response prediction based on multi-modal information consisting of genomic features and drug structure. We empirically evaluate our method on three large-scale in vitro pharmacogenomic datasets and show that our approach outperforms several benchmarks in identifying optimal treatment for a given cell line.

Via

Yifang Chen, Simon S. Du, Kevin Jamieson

To leverage the power of big data from source tasks and overcome the scarcity of the target task samples, representation learning based on multi-task pretraining has become a standard approach in many applications. However, up until now, choosing which source tasks to include in the multi-task learning has been more art than science. In this paper, we give the first formal study on resource task sampling by leveraging the techniques from active learning. We propose an algorithm that iteratively estimates the relevance of each source task to the target task and samples from each source task based on the estimated relevance. Theoretically, we show that for the linear representation class, to achieve the same error rate, our algorithm can save up to a \textit{number of source tasks} factor in the source task sample complexity, compared with the naive uniform sampling from all source tasks. We also provide experiments on real-world computer vision datasets to illustrate the effectiveness of our proposed method on both linear and convolutional neural network representation classes. We believe our paper serves as an important initial step to bring techniques from active learning to representation learning.

Via

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, Kevin Jamieson

Reward-free reinforcement learning (RL) considers the setting where the agent does not have access to a reward function during exploration, but must propose a near-optimal policy for an arbitrary reward function revealed only after exploring. In the the tabular setting, it is well known that this is a more difficult problem than PAC RL -- where the agent has access to the reward function during exploration -- with optimal sample complexities in the two settings differing by a factor of $|\mathcal{S}|$, the size of the state space. We show that this separation does not exist in the setting of linear MDPs. We first develop a computationally efficient algorithm for reward-free RL in a $d$-dimensional linear MDP with sample complexity scaling as $\mathcal{O}(d^2/\epsilon^2)$. We then show a matching lower bound of $\Omega(d^2/\epsilon^2)$ on PAC RL. To our knowledge, our approach is the first computationally efficient algorithm to achieve optimal $d$ dependence in linear MDPs, even in the single-reward PAC setting. Our algorithm relies on a novel procedure which efficiently traverses a linear MDP, collecting samples in any given "feature direction", and enjoys a sample complexity scaling optimally in the (linear MDP equivalent of the) maximal state visitation probability. We show that this exploration procedure can also be applied to solve the problem of obtaining "well-conditioned" covariates in linear MDPs.

Via

Andrew Wagenmaker, Yifang Chen, Max Simchowitz, Simon S. Du, Kevin Jamieson

Obtaining first-order regret bounds -- regret bounds scaling not as the worst-case but with some measure of the performance of the optimal policy on a given instance -- is a core question in sequential decision-making. While such bounds exist in many settings, they have proven elusive in reinforcement learning with large state spaces. In this work we address this gap, and show that it is possible to obtain regret scaling as $\mathcal{O}(\sqrt{V_1^\star K})$ in reinforcement learning with large state spaces, namely the linear MDP setting. Here $V_1^\star$ is the value of the optimal policy and $K$ is the number of episodes. We demonstrate that existing techniques based on least squares estimation are insufficient to obtain this result, and instead develop a novel robust self-normalized concentration bound based on the robust Catoni mean estimator, which may be of independent interest.

Via