Cooperative Medianet Innovation Center, Shanghai Jiao Tong University, China and Shanghai AI Laboratory, China
Abstract:Collaborative perception has garnered considerable attention due to its capacity to address several inherent challenges in single-agent perception, including occlusion and out-of-range issues. However, existing collaborative perception systems heavily rely on precise localization systems to establish a consistent spatial coordinate system between agents. This reliance makes them susceptible to large pose errors or malicious attacks, resulting in substantial reductions in perception performance. To address this, we propose~$\mathtt{CoBEVGlue}$, a novel self-localized collaborative perception system, which achieves more holistic and robust collaboration without using an external localization system. The core of~$\mathtt{CoBEVGlue}$ is a novel spatial alignment module, which provides the relative poses between agents by effectively matching co-visible objects across agents. We validate our method on both real-world and simulated datasets. The results show that i) $\mathtt{CoBEVGlue}$ achieves state-of-the-art detection performance under arbitrary localization noises and attacks; and ii) the spatial alignment module can seamlessly integrate with a majority of previous methods, enhancing their performance by an average of $57.7\%$. Code is available at https://github.com/VincentNi0107/CoBEVGlue
Abstract:In this paper, we introduce a groundbreaking end-to-end (E2E) framework for decoding invasive brain signals, marking a significant advancement in the field of speech neuroprosthesis. Our methodology leverages the comprehensive reasoning abilities of large language models (LLMs) to facilitate direct decoding. By fully integrating LLMs, we achieve results comparable to the state-of-the-art cascade models. Our findings underscore the immense potential of E2E frameworks in speech neuroprosthesis, particularly as the technology behind brain-computer interfaces (BCIs) and the availability of relevant datasets continue to evolve. This work not only showcases the efficacy of combining LLMs with E2E decoding for enhancing speech neuroprosthesis but also sets a new direction for future research in BCI applications, underscoring the impact of LLMs in decoding complex neural signals for communication restoration. Code will be made available at https://github.com/FsFrancis15/BrainLLM.
Abstract:Federated learning (FL) enables multiple parties to collaboratively fine-tune an large language model (LLM) without the need of direct data sharing. Ideally, by training on decentralized data that is aligned with human preferences and safety principles, federated instruction tuning can result in an LLM that could behave in a helpful and safe manner. In this paper, we for the first time reveal the vulnerability of safety alignment in FedIT by proposing a simple, stealthy, yet effective safety attack method. Specifically, the malicious clients could automatically generate attack data without involving manual efforts and attack the FedIT system by training their local LLMs on such attack data. Unfortunately, this proposed safety attack not only can compromise the safety alignment of LLM trained via FedIT, but also can not be effectively defended against by many existing FL defense methods. Targeting this, we further propose a post-hoc defense method, which could rely on a fully automated pipeline: generation of defense data and further fine-tuning of the LLM. Extensive experiments show that our safety attack method can significantly compromise the LLM's safety alignment (e.g., reduce safety rate by 70\%), which can not be effectively defended by existing defense methods (at most 4\% absolute improvement), while our safety defense method can significantly enhance the attacked LLM's safety alignment (at most 69\% absolute improvement).
Abstract:Training a unified model to take multiple targets into account is a trend towards artificial general intelligence. However, how to efficiently mitigate the training conflicts among heterogeneous data collected from different domains or tasks remains under-explored. In this study, we explore to leverage Mixture of Low-rank Adapters (MoLA) to mitigate conflicts in heterogeneous data training, which requires to jointly train the multiple low-rank adapters and their shared backbone. Specifically, we introduce two variants of MoLA, namely, MoLA-Grad and MoLA-Router, to respectively handle the target-aware and target-agnostic scenarios during inference. The former uses task identifiers to assign personalized low-rank adapters to each task, disentangling task-specific knowledge towards their adapters, thereby mitigating heterogeneity conflicts. The latter uses a novel Task-wise Decorrelation (TwD) loss to intervene the router to learn oriented weight combinations of adapters to homogeneous tasks, achieving similar effects. We conduct comprehensive experiments to verify the superiority of MoLA over previous state-of-the-art methods and present in-depth analysis on its working mechanism. Source code is available at: https://github.com/MediaBrain-SJTU/MoLA
Abstract:Most existing anomaly detection methods require a dedicated model for each category. Such a paradigm, despite its promising results, is computationally expensive and inefficient, thereby failing to meet the requirements for real-world applications. Inspired by how humans detect anomalies, by comparing a query image to known normal ones, this paper proposes a novel few-shot anomaly detection (FSAD) framework. Using a training set of normal images from various categories, registration, aiming to align normal images of the same categories, is leveraged as the proxy task for self-supervised category-agnostic representation learning. At test time, an image and its corresponding support set, consisting of a few normal images from the same category, are supplied, and anomalies are identified by comparing the registered features of the test image to its corresponding support image features. Such a setup enables the model to generalize to novel test categories. It is, to our best knowledge, the first FSAD method that requires no model fine-tuning for novel categories: enabling a single model to be applied to all categories. Extensive experiments demonstrate the effectiveness of the proposed method. Particularly, it improves the current state-of-the-art for FSAD by 11.3% and 8.3% on the MVTec and MPDD benchmarks, respectively. The source code is available at https://github.com/Haoyan-Guan/CAReg.
Abstract:The remarkable success of modern machine learning models on large datasets often demands extensive training time and resource consumption. To save cost, a prevalent research line, known as online batch selection, explores selecting informative subsets during the training process. Although recent efforts achieve advancements by measuring the impact of each sample on generalization, their reliance on additional reference models inherently limits their practical applications, when there are no such ideal models available. On the other hand, the vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner, which sacrifices the diversity and induces the redundancy. To tackle this dilemma, we propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples. Specifically, we define a novel selection objective that measures the group-wise orthogonalized representativeness to combat the redundancy issue of previous sample-wise criteria, and provide a principled selection-efficient realization. Extensive experiments across various tasks demonstrate the significant superiority of DivBS in the performance-speedup trade-off. The code is publicly available.
Abstract:Federated learning has enabled multiple parties to collaboratively train large language models without directly sharing their data (FedLLM). Following this training paradigm, the community has put massive efforts from diverse aspects including framework, performance, and privacy. However, an unpleasant fact is that there are currently no realistic datasets and benchmarks for FedLLM and previous works all rely on artificially constructed datasets, failing to capture properties in real-world scenarios. Addressing this, we propose FedLLM-Bench, which involves 8 training methods, 4 training datasets, and 6 evaluation metrics, to offer a comprehensive testbed for the FedLLM community. FedLLM-Bench encompasses three datasets (e.g., user-annotated multilingual dataset) for federated instruction tuning and one dataset (e.g., user-annotated preference dataset) for federated preference alignment, whose scale of client number ranges from 38 to 747. Our datasets incorporate several representative diversities: language, quality, quantity, instruction, length, embedding, and preference, capturing properties in real-world scenarios. Based on FedLLM-Bench, we conduct experiments on all datasets to benchmark existing FL methods and provide empirical insights (e.g., multilingual collaboration). We believe that our FedLLM-Bench can benefit the FedLLM community by reducing required efforts, providing a practical testbed, and promoting fair comparisons. Code and datasets are available at https://github.com/rui-ye/FedLLM-Bench.
Abstract:Fine-tuning on task-specific question-answer pairs is a predominant method for enhancing the performance of instruction-tuned large language models (LLMs) on downstream tasks. However, in certain specialized domains, such as healthcare or harmless content generation, it is nearly impossible to obtain a large volume of high-quality data that matches the downstream distribution. To improve the performance of LLMs in data-scarce domains with domain-mismatched data, we re-evaluated the Transformer architecture and discovered that not all parameter updates during fine-tuning contribute positively to downstream performance. Our analysis reveals that within the self-attention and feed-forward networks, only the fine-tuned attention parameters are particularly beneficial when the training set's distribution does not fully align with the test set. Based on this insight, we propose an effective inference-time intervention method: \uline{T}raining \uline{A}ll parameters but \uline{I}nferring with only \uline{A}ttention (\trainallInfAttn). We empirically validate \trainallInfAttn using two general instruction-tuning datasets and evaluate it on seven downstream tasks involving math, reasoning, and knowledge understanding across LLMs of different parameter sizes and fine-tuning techniques. Our comprehensive experiments demonstrate that \trainallInfAttn achieves superior improvements compared to both the fully fine-tuned model and the base model in most scenarios, with significant performance gains. The high tolerance of \trainallInfAttn to data mismatches makes it resistant to jailbreaking tuning and enhances specialized tasks using general data.
Abstract:Underwater object tracking (UOT) is a foundational task for identifying and tracing submerged entities in underwater video sequences. However, current UOT datasets suffer from limitations in scale, diversity of target categories and scenarios covered, hindering the training and evaluation of modern tracking algorithms. To bridge this gap, we take the first step and introduce WebUOT-1M, \ie, the largest public UOT benchmark to date, sourced from complex and realistic underwater environments. It comprises 1.1 million frames across 1,500 video clips filtered from 408 target categories, largely surpassing previous UOT datasets, \eg, UVOT400. Through meticulous manual annotation and verification, we provide high-quality bounding boxes for underwater targets. Additionally, WebUOT-1M includes language prompts for video sequences, expanding its application areas, \eg, underwater vision-language tracking. Most existing trackers are tailored for open-air environments, leading to performance degradation when applied to UOT due to domain gaps. Retraining and fine-tuning these trackers are challenging due to sample imbalances and limited real-world underwater datasets. To tackle these challenges, we propose a novel omni-knowledge distillation framework based on WebUOT-1M, incorporating various strategies to guide the learning of the student Transformer. To the best of our knowledge, this framework is the first to effectively transfer open-air domain knowledge to the UOT model through knowledge distillation, as demonstrated by results on both existing UOT datasets and the newly proposed WebUOT-1M. Furthermore, we comprehensively evaluate WebUOT-1M using 30 deep trackers, showcasing its value as a benchmark for UOT research by presenting new challenges and opportunities for future studies. The complete dataset, codes and tracking results, will be made publicly available.
Abstract:In federated learning (FL), the multi-step update and data heterogeneity among clients often lead to a loss landscape with sharper minima, degenerating the performance of the resulted global model. Prevalent federated approaches incorporate sharpness-aware minimization (SAM) into local training to mitigate this problem. However, the local loss landscapes may not accurately reflect the flatness of global loss landscape in heterogeneous environments; as a result, minimizing local sharpness and calculating perturbations on client data might not align the efficacy of SAM in FL with centralized training. To overcome this challenge, we propose FedLESAM, a novel algorithm that locally estimates the direction of global perturbation on client side as the difference between global models received in the previous active and current rounds. Besides the improved quality, FedLESAM also speed up federated SAM-based approaches since it only performs once backpropagation in each iteration. Theoretically, we prove a slightly tighter bound than its original FedSAM by ensuring consistent perturbation. Empirically, we conduct comprehensive experiments on four federated benchmark datasets under three partition strategies to demonstrate the superior performance and efficiency of FedLESAM.